Design Methodology of a Multi-village Microgrid ; Case Study of the Sahel Region

  • Mahamadou Abdou Tankari


This paper deals the optimal sizing and location of the power plant in a microgrid interconnecting several villages. The case study is defined by eight villages of rural community of Dakoro, in Niger. The methodological approach proposed is based on a matrix of distances established from the geographical coordinates of the sites. This serves as a basis for the estimation of the losses as well as for estimation of the shortest path defining the architecture of the microgrid. The energy requirement is then estimated for sizing power sources (PV, diesel generator) and energy storage units. The particle swarm optimization method is applied to the data with some criteria and constraints. The proposed energy flow management strategy is tested on a realtime system according to different scenarios. The results are presented and analyzed.


[1] A. Brew-Hammond, “Energy access in Africa: Challenges ahead”, Energy Policy, vol. 38, no 5, p. 2291-2301, 2010.
[2] F. M. Butera, P. Caputo, R. S. Adhikari, et A. Facchini, “Urban Development and Energy Access in Informal Settlements. A Review for Latin America and Africa”, Procedia Eng., vol. 161, p. 2093‑2099, 2016.
[3] C. K. Pandey et A. K. Katiyar, “A note on diffuse solar radiation on a tilted surface”, Energy, vol. 34, no 11, p. 1764‑1769, 2009.
[4] F. Besharat, A. A. Dehghan, et A. R. Faghih, “Empirical models for estimating global solar radiation: A review and case study”, Renew. Sustain. Energy Rev., vol. 21, p. 798‑821, 2013.
[5] A. Adell, “Determination of the optimum inclination of a flat solar collector in function of latitude and local climatic data”, Revue Physique Appliquee, vol. 17, no 9, p. 569‑576, 1982.
[6] M. M. El-Kassaby, “Monthly and daily optimum tilt angle for south facing solar collectors; theoretical model, experimental and empirical correlations”, Sol. Wind Technol., vol. 5, no 6, p. 589‑596, janv. 1988.
[7] S. A. Khalil, A. M. Shaffie, “A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt”, Renew. Sustain. Energy Rev., vol. 27, p. 853‑863, 2013.
[8] R. Tang, T. Wu, « Optimal tilt-angles for solar collectors used in China », Appl. Energy, vol. 79, no 3, p. 239‑248, 2004.
[9] G. Notton, P. Poggi, C. Cristofari, “Predicting hourly solar irradiations on inclined surfaces based on the horizontal measurements: Performances of the association of well-known mathematical models”, Energy Convers. Manag., vol. 47, no 13–14, p. 1816‑1829, 2006.
[10] C. A. Gueymard, “Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications”, Sol. Energy, vol. 83, no 3, p. 432‑444, 2009.
[11] H. Darhmaoui, D. Lahjouji, “Latitude Based Model for Tilt Angle Optimization for Solar Collectors in the Mediterranean Region”, Energy Procedia, vol. 42, p. 426‑435, 2013.
[12] G. A. Kamali, I. Moradi, A. Khalili, “Estimating solar radiation on tilted surfaces with various orientations: a study case in Karaj”, Theor. Appl. Climatol., vol. 84, no 4, p. 235‑241, 2006.
[13] D. G. Erbs, S. A. Klein, J. A. Duffie, “Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation”, Sol. Energy, vol. 28, no 4, p. 293‑302, 1982.
[14] J. K. Yohanna, I. N. Itodo, V. I. Umogbai, “A model for determining the global solar radiation for Makurdi, Nigeria”, Renew. Energy, vol. 36, no 7, p. 1989‑1992, 2011.
[15] A. M. Muzathik, M. Z. Ibrahim, K. B. Samo, W. B. Wan Nik, “Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements”, Energy, vol. 36, no 2, p. 812‑818, 2011.
[16] O. O. Ajayi, O. D. Ohijeagbon, C. E. Nwadialo, and O. Olasope, “New model to estimate daily global solar radiation over Nigeria”, Sustain. Energy Technol. Assess., vol. 5, p. 28‑36, 2014.
[17] Y.-P. Chang, “Optimal the tilt angles for photovoltaic modules in Taiwan”, Int. Journal of Electr. Power Energy Syst., vol. 32, no 9, p. 956‑964, 2010.
[18] K. Bakirci, “General models for optimum tilt angles of solar panels: Turkey case study”, Renew. Sustain. Energy Rev., vol. 16, no 8, p. 6149‑6159, 2012.
[19] M. David, P. Lauret, J. Boland, “Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location”, Renew. Energy, vol. 51, p. 124‑131, 2013.
[20] K. Skeiker, “Optimum tilt angle and orientation for solar collectors in Syria”, Energy Convers. Manag., vol. 50, no 9, p. 2439‑2448, 2009.
[21] A. P. de Souza, J. F. Escobedo, “Estimates of hourly diffuse radiation on tilted surfaces in Southeast of Brazil”, Int. J. Renew. Energy Res. IJRER, vol. 3, no 1, p. 207‑221, 2013.
[22] D. G. Erbs, S. A. Klein, J. A. Duffie, “Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation”, Sol. Energy, vol. 28, no 4, p. 293‑302, 1982.
[23] Y. Sokona, Y. Mulugetta, H. Gujba, “Widening energy access in Africa: Towards energy transition”, Energy Policy, vol. 47, p. 3‑10, 2012.
[24] J. F. Manwell et al., “hybrid2- A Hybrid System Simulation Model - Theory Manual”, Renewable Energy Research Laboratory, University Of Massachusetts, June 2006, 2006.
[25] R. Dufo-López, J. L. Bernal-Agustín, “Multi-objective design of PV–wind–diesel–hydrogen–battery systems”, Renew Energy Journal, vol. 33, no 12, p. 2559‑2572, 2008.
[26] W. Short, D. J. Packey, T. Holt, “A manual for the economic evaluation of energy efficiency and renewable energy technologies”, NREL/TP--462-5173, 35391, mars 1995.
[27] U. Aswathanarayana, T. Harikrishnan, K. M. Thayyib Sahini, “Green energy: technology, economics, and policy”, CRC Press, 2010.
[28] B. Agrawal, G. N. Tiwari, “Building integrated photovoltaic thermal systems: for sustainable developments”, Cambridge, UK 2011.
[29] M. Clerc, J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space”, IEEE Trans. Evol. Comput., vol. 6, no 1, p. 58‑73, 2002.
[30] M. Clerc, “Particle swarm optimization”, ISTE, London  2006.
[31] S. Y. Lim, M. Montakhab, H. Nouri, “A constriction factor based particle swarm optimization for economic dispatch”, In Proceedings of European Simulation and Modelling Conference, UK 2009.
[32] S. Sengupta, A. K. Das, “Particle Swarm Optimization based incremental classifier design for rice disease prediction”, Comput. Electron. Agric., vol. 140, p. 443‑451, 2017.
[33] L. Idoumghar, D. Fodorean, A. Miraoui, “Using hybrid Constricted Particles Swarm and simulated annealing algorithm for electric motor design”, 2010.
How to Cite
TANKARI, Mahamadou Abdou. Design Methodology of a Multi-village Microgrid ; Case Study of the Sahel Region. International Journal of Smart Grids, ijSmartGrid, [S.l.], v. 2, n. 1, March, p. 67-76, mar. 2018. ISSN 2602-439X. Available at: <>. Date accessed: 26 apr. 2018.