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   Abstract — Smart grid is an emerging platform adopted by many electric power utility companies to enhance proper service 
delivery as well as cost-effective operations. Automatic Fault Detection and Clearance (AFDC) is a part of intelligent technology 
initiatives established on Tanzania’s grid aiming at detecting, managing, and handling fault with little or without human 
intervention. Being one of the components of AFDC, the Load Forecasting (LF) plays important role in feeding restoration and 
distributed energy resource agencies. However, the efficiency of the existing LF approaches is found to be compromised when 
it comes to data whose distribution is characterized by a random-walk behavior. Therefore, this research work proposes an 
efficient AFDC-based LF (LF-AFDC) which is capable of generating load demand profile based on fault data. Firstly, the design 
requirements of the LF-AFDC framework are established using focus group discussion and literature survey. Secondly, the 
design of the LF model is achieved through parameter calibration from the existing Multivariate Non-Linear Regression 
(MNLR) method. Thirdly, the design of the LF-AFDC framework is achieved based on the design requirements for the real-
time and fault-driven forecasting. Findings indicate the capability of the proposed framework to forecast the next load profile 
from the given fault-date, fault-time, restoration duration, Gross-Domestic Product (GDP), number of customers, and population 
information. Furthermore, the simulation results indicate the capability of the extended MNLR (e-MNLR) method to outperform 
the ANN, SVM, KNN, MICE, MissForest and MNLR models. 

Keywords — Smart Grid, Automatic Fault Clearance, Load Forecasting, Extended-MNLR 

1. Introduction 
Smart grid is regarded as a modern electric power grid 

infrastructure adopted by utility companies to enhance service 
efficiency, availability, and reliability [1]. In Tanzania, for 
instance, the primary distribution part is largely automated but 
little attention has been paid to the secondary distribution. 
Thus, in the effort to establish smart distribution technologies 

in the Secondary Distribution Electric Power Grid (SDEPG), 
the University of Dar es Salaam in conjunction with the 
Swedish International Development Agency (Sida), has 
facilitated research focusing on establishing an AFDC [2], [3].  

An AFDC is a proposed smart grid mechanism aiming at 
detecting and managing faults in the SDEPG, with little or no 
physical interaction at all [2]. The AFDC mechanism works in 
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the sense that, when a fault occurs in the SDEPG, it is detected 
by a fault management agent and later on its localization is 
identified [4]. Following the fault identification process, the 
healthy part is isolated and then the service is restored by the 
restoration controller agency using Distributed Energy 
Resources (DER) [4]. However, restoration controllers and 
DER have no built-in mechanisms for anticipating the power 
consumption demand for a particular distribution area. 
Therefore, there is a need for adapting existing load 
forecasting models to suit the AFDC requirements. 

 Several research works such as [4]–[12], have attempted 
to use load forecasting for service restoration. Their proposed 
mechanisms have limitations when it comes to forecasting in 
a faulty-based environment as well as when data is 
characterized by random-walk distribution. In the fault-based 
occasion environment, the generation of a load profile is 
supposed to be driven by information associated with the fault 
such as time, date, and restoration span. This research work, 
therefore, proposes a fault and restoration-based forecasting 
mechanism that generates load profiles for both DERs and 
restoration controller agencies. The core part of the proposed 
forecasting mechanism is built on top of the extended-MNLR 
that works better in the situation of random-walk data. 

2. Background 
2.1. Automatic Fault Clearance 

AFDC refers to the practice that encompasses 
mechanisms for detecting, handling, and managing faults at 
Secondary Distribution Electric Power Grid (SDEPG) with 
little or without human intervention[2], [3], [13]. The diagram 
in Fig.1 illustrates the overall component interaction of the 
AFDC at the SDEPG. The network is supposed to be 
comprised of three subnetworks served by transformers 
connected to the main distribution line.  

 
Fig. 1.  The role of LF mechanism in the overall AFDC 

context 

The AFDC mechanism is expected to work in such a way 
that, when the fault occurs; let’s say in subnetwork 1, it is 
detected by the fault agency. The faulty subnetwork is 
automatically isolated and Service Restoration (SR) agency 
resumes power to the rest of the unaffected parts (subnetwork2 
and 3) using available DERs. Thus, the role of the LF 
mechanism in the AFDC is to anticipate the real-time power 

supplied to the isolated health part during the restoration 
process. 

2.2. Load Forecasting for Service Restoration 
A method for estimating the time at which electric power 

will be restored is proposed by [7] using the company’s 
experience in six hurricanes, eight storms, and accelerated 
failure time. In the effort to adapt forecasting models for 
automated service restoration management. [6] have proposed 
an algorithm that uses day type and day time to determine a 
pre-fault load profile for online estimation of loads in a 
network. The pre-fault short-term load profile is then used to 
feed the capacity check algorithm of the power restoration 
controller. [10] proposes a forecasting mechanism that 
generates a short-term load profile which is then used to feed 
an automatic frequency restoration reserve from renewable 
energy based on a virtual power plan. [14] Proposes a flexible 
model for predicting electric power required to be restored by 
distributed generation controls in an uncertain environment. 
[11] proposes a short-term load forecasting approach that can 
be used to model load demand forecasting for 20-minutes 
service restoration in secondary distribution power networks 
in Tanzania.  

All aforementioned approaches for service restoration are 
limited to forecasting in three aspects; firstly, in the fault-
driven situation in which the load profile is automatically 
generated by the trigger from the fault management agency. 
Secondly, in the situation where the forecasting is also based 
on the information from a service restoration agency. Thirdly, 
in the situation where load data characterized by random-walk 
distribution. 

2.3. Load forecasting methods 
Load forecasting methods range from statistical, 

regression to machine learning [15]. Statistical-based 
forecasting methods include Box-Jenkins, Calman filtering 
algorithm, grey model, Automatic regression, and exponential 
smoothing [15]. Regression-based forecasting methods 
include Autoregressive Moving Average (ARMA), 
Autoregressive Integrated Moving Average (ARIMA), 
Autoregressive Moving Average (ARMA), and 
Autoregressive Moving Average with exogenous input 
(ARMAX) [16]. Statistical and regression methods have a 
limited ability to model nonlinear and nonstationary 
distribution. Thus, to accommodate nonlinear behavior in 
regression models, [17] has proposed a new method that can 
forecast in the nonlinear fashion. 

The extension of statistical and regression methods to 
accommodate nonlinear behavior does not efficiently address 
the nonstationarity and nonlinearity bottlenecks. Contrary,  
machine learning models seem to work better with nonlinear 
data and they are well fitted for short-term forecasting relative 
to regression models [16]. However, the capability of the 
machine learning models such as ANN, SVM, LSTM, and 



INTERNATIONAL JOURNAL of SMART GRID  
Hussein Bakiri et al., Vol.5, No.2, June, 2021 

 

105 

105 

fuzzy logic might be compromised when it comes to the load 
data that exhibits random-walk behavior. 

2.4. Factors to be Considered when Designing Load 
Forecasting Model in Developing Countries 

Research works have reported on the existence of peculiar 
long-term load distribution in developing countries contrary to 
the developed ones. The peculiarity is caused by social-
economic and technological grounds [18]–[21]. The exhibited 
abnormal load pattern in developing countries, which is 
characterized by non-stationarity, hinders the efficiency of 
existing forecasting methods [22]. On the other hand, the 
daytime, calendar events, GDP, number of customers, 
electricity price, and population have been reported to 
influence long-term electricity consumption [21]–[27]. 
Therefore, it is necessary to investigate specific determinants 
of power consumption in a particular country. 

2.5. The MNLR model 
The MNLR model has been proposed in the work by [17]. 

The model has produced promising results when applied to 
nonlinear time series data. Moreover, the model can simply be 
extended through parameterization. The original form of the 
MNLR model is shown in equation (1). 

Y =  𝛼"	$𝑥&
'()$	𝑥*

'+)… . 𝑥.
'/              (1) 

Where 𝛼" to 𝛼. model parameters, 𝑥& to 𝑥. are input 
variables and Y is a dependent variable. 

3. Material and Methods 
3.1. Research Design 

The training and testing data in this study are based on 
secondary records. Data collection is achieved qualitatively 
whereas the data analysis is conducted quantitatively. After 
the analysis, the data is then tested on six widely used 
prediction methods namely; MNLR, MissForest, SVM, ANN, 
KNN, and MICE to test the claim that existing methods do not 
work effectively on random-walk distribution. Later on, the 
method presented by equation (1) is extended so that it is 
capable of forecasting effectively in random-walk data. 
Finally, the proposed LF model is designed according to the 
requirements of the AFDC mechanism. The overall research 
methodology is presented in Fig. 2. 

 
Fig. 2. The overall research design process 

3.2. Study Area and Data Description 
This study is based on the Mikocheni area; a secondary 

distribution network having three transformers named BBQ 
Village SS1, Abiudi Street, and Kimweri Avenue-ss1 (with 
the power of 315KVA, 200KVA, and 100KVA respectively), 
serving an average of 143 customers per transformer. Each 
transformer has an average consumption of 30KWh per 20 
minutes.  

The study area is depicted by a site map in Fig. 3. The area 
is characterized by customers of moderate GDP earning, 
primarily residential buildings. Furthermore, the area is 
characterized by annual consumption growth as per 2015 to 
2018 data as presented in Fig. 4. 

 
Fig.  3.  A site map of the secondary distribution network 

at Kinondoni-North (Mikocheni) study area in Dar es salaam 
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Fig.  4. The daily load consumption from 2015-2018 as 

per Kinondoni-North data in Dar es Salaam      

3.3. Data collection 
The 20-minute interval load data from 2015 to 2019 (a 

total of 105193 records) has been recorded through 
accumulated meter reading situated on the study area. 
Moreover, the annual GDP data from 2015 to 2019 was 
collected from the National Bureau of Statistics (NBS). 
Furthermore, the monthly number of customers and 
population data (from 2015 to 2019) was also collected from 
Tanzania National Electric Supply Company (TANESCO).   

3.4. Data Analysis 
The collected load data is checked for the presence of 

outliers and missing values using the k-mean algorithm. The 
k-mean is a clustering and supervised machine learning 
algorithm that works based on the specified number of clusters 
and the central mean values of each cluster (centroids) [28]. 
The choice of the k-mean algorithm in this work is based on 
the fact that the central values are already known from expert 
knowledge. Therefore, two clusters are formed for which two 
centroid values (4 and 25) are initialized. The setting of 
centroid values is based on the expert knowledge that the 
average power consumption is 16, and thus any values below 
15 are regarded as outliers.  

3.5. Determining Characteristics of Load Distribution in 
Tanzania 

Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) are used to test for random-
walk behavior in the time series data. Furthermore, a load 
graph against time for the five years (2015 to 2019) is also 
plotted to aid in visual analysis. 

3.6. Checking for the Capability of Existing Forecasting 
Methods on the Random-Walk Data 

The six widely used methods (ANN, SVM, KNN, MNLR, 
MissForest, and MICE) are applied to the available random-
walk data to confirm their prediction capability. If poor 
prediction accuracy is observed, this will then lead us to 
extend an existing model to improve predictive accuracy. 
Furthermore, choosing which among the models to adapt is 

based on the easily adaptable method that can suit the nature 
of the data. 

3.7. The LF Model 
The LF model is designed such that it is capable of 

producing promising results despite the random-walk nature 
of the load data. In addition to that, the model is designed to 
achieve a high level of flexibility using both long (GDP, 
number customer, and population) and short-term (daytime, 
day type, and temperature) factors. Moreover, due to its ability 
to be extensible, the LF model is built on top of the MNLR 
model presented in equation (1). The overall design process of 
the LF model is presented in Fig. 5. Finally, the parameters 
and variables in equation (1) are calibrated to produce a new 
e-MNLR equation. 

 
Fig.  5. The architecture of the proposed LF model  

4. Designing the LF Model 
4.1. Conceptual Model of the Proposed LF-AFDC 

Mechanism 
To design an effective LF-AFDC framework, it is 

required to be modeled in a way that it is capable of generating 
a 20-minutes load profile once the fault is detected. 
Furthermore, the model should also be designed in a way that 
it receives fault date and fault time from the fault detection 
agency. In addition to that, the LF-AFDC mechanism should 
also receive restoration duration from a service restoration or 
maintenance agency.  

The model should account for the GDP, the number of 
customers and population as these are the main determinants 
of long-term electricity consumption in Tanzania. The 
conceptual model of the proposed LF-AFDC framework is 
clearly illustrated in Fig. 6. The overall modeling process is 
portrayed by the Algorithm I pseudocode in Table 1. 
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Fig.  6. The Conceptual model of the proposed LF-AFDC 

framework   

The outputs of time, date, and restoration-transformation 
procedures become the corresponding time, day type, and 20-
minute interval values respectively. Time, date, and 
restoration duration together with values of GDP, the number 
of customers, and population become inputs to the e-MNLR 
model as seen in Fig. 7. 

 

 

 

Table 1. The LF-AFDC algorithm 

The algorithm I:  LF-AFDC 

1:  Receive real-time GDP,customers, population, fault time (ft), fault 
date (fd) and restoration duration (rd) stamps 

2:  Compute forecasting span and number of forecasting intervals using 
rd 

3:  Compute time and day ordinal values using time_transformation and 
day_transformation sub_processes 

4:  Forecast load profile using the e-MNLR from equation (2) 
5:  Produce forecasted load profile at the time interval of length (rd) 
6:  End 

 

 
Fig. 7. The architectural model of the proposed LF in AFDC 

 
Therefore, after parameterizing the original MNLR 

equation (from equation (1), with the design requirements in 
Fig. 6, the extended model becomes as shown in equation (2). 

𝑦1 =  𝑥1
'2 ∗ 	𝑥4

'5 ∗	𝑥6
'7 ∗ 𝑥8

'9 ∗ 𝑥:
';                      (2)             

        Where 𝑦1 = load at time (20 minutes), 𝑥1 = time value 
whose load is sought, 𝑥4 = day category number, 𝑥6 = GDP 
value of the current year, 𝑥8 = current population, 𝑥: = 
current number of customers., and 𝛼1, 𝛼4, 𝛼6, 𝛼8	𝑎𝑛𝑑	𝛼:  are 
time, day, GDP, population and customer parameters 
respectively.                           

4.2. Time Transformation Sub-process 
The corresponding time value (𝑥1) in each time category 

is obtained from applying a logarithmic function to the 
equation (5). The parameter variable is expressed in equation 
(3). 

𝑥1 = 	 𝑙𝑜𝑔D& E
$[GH6(J2)]D['5∗	GH6(M5)N	'7∗	GH6$M7)N'9∗	GH6$M9)N';∗	GH6(M;)])

'2
O             

                                                                                     (3) 
The received fault time stamp from the fault agency 

needs to be transformed into time categories (𝑦:P1). Firstly, 
the time is transformed into the corresponding numerical 
values (𝑥) so that it is in a computed form. Secondly, the 
obtained numerical values, are transformed into the 
equivalent time category. Thirdly, the stepwise function is 
generalized to produce equivalent time values for any 



INTERNATIONAL JOURNAL of SMART GRID  
Hussein Bakiri et al., Vol.5, No.2, June, 2021 

 

108 

108 

inputted time. The formulated stepwise function is shown in 
equation (4). 

𝑓(𝑦:P1) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑥VW4 − 0.1, 𝑥:P1 = 𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡
𝑥GVW4 − 0.05, 𝑥:P1 = 𝑙𝑎𝑡𝑒	𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡
𝑥4Pa. − 0.05, 𝑥:P1 = 𝑑𝑎𝑤𝑛
𝑥VHc. − 0.025, 𝑥:P1 = 𝑚𝑜𝑟𝑛𝑖𝑛𝑔
𝑥GVHc. + 0.1, 𝑥:P1 = 𝑙𝑎𝑡𝑒	𝑚𝑜𝑟𝑛𝑖𝑛𝑔
𝑥.HH. − 0.05, 𝑥:P1 = 𝑛𝑜𝑜𝑛

𝑥Pg.HH. − 0.05, 𝑥:P1 = 𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑜𝑛
𝑥hih.W.6 − 0.5, 𝑥:P1 = 𝑒𝑣𝑒𝑛𝑖𝑛𝑔

𝑥Ghih.W.6& + 0.15, 𝑥:P1 = 𝑙𝑎𝑡𝑒	𝑒𝑣𝑒𝑛𝑖𝑛𝑔1
𝑥Ghih.W.6* + 0.15, 𝑥:P1 = 𝑙𝑎𝑡𝑒	𝑒𝑣𝑒𝑛𝑖𝑛𝑔2

𝑥.W6k1 − 0.1, 𝑥:P1 = 𝑛𝑖𝑔ℎ𝑡

                                                                                                      

                                                                               (4) 

4.3. Date Transformation Sub-process 
The received date information from the faulty detection 

agency needs to be processed to extract the day number. The 
day number is then used to determine the day category. Using 
the day category, the ordinal day values are deduced.  

4.4. Restoration Duration Sub-process 
It is important to determine the starting and ending 

forecasting times in advance, to produce the load profile that 
will be used throughout the restoration duration. 
Furthermore, the number of time values between starting 
ending points needs to be identified as well. To achieve this, 
the received fault time and restoration duration are converted 
into minutes (from hours) and then their summation is 
computed. The overall restoration process is depicted in Fig. 
8.  

 
Fig.  8. Restoration-duration transformation process 

5. Simulation Results and Discussion 
5.1. Results 

5.1.1. Long-term Load Distribution Characteristics 
in Tanzania 

The test conducted on 2015 to 2018 data indicates that 
the load distribution trend in Tanzania is characterized by 
random-walk behavior. Firstly, from Fig. 9-a (autocorrelation 
versus lags), it can be seen that a gentle decline for the 
number of lags is observed to span towards the bottom margin 
of a significant correlation line. Secondly, from Fig. 9-b 
(partial autocorrelation versus lags) it is observed that the first 
lag shows a significant correlation while the rest are 
insignificant. Furthermore, Fig. 9-c confirms the 
nonstationary behavior exhibited by the time series data. 
Therefore, the aforementioned graph analysis confirms the 
random-walk property in the load data

. 

 

a 

 

b 

 

c 

Fig. 9. Random-walk test results using 2015 to 2018 North-Kinondoni load data in Dar es Salaam 

5.1.2.  Outliers and Missing Values in the Load 
Data 

After running the k-mean algorithm in R, the empirical 
results indicate that the load data contains about 5.17852% 

(which is 5207 out of 105192) outliers. This finding 
confirms the findings observed from other research works 
that load data in developing countries might be 
characterized by the presence of corrupt entries. These 
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corrupt entries may jeopardize the accuracy of the 
prediction models if not treated beforehand. 

5.1.3. Are the Existing Methods Effective on a 
Random-Walk Data? 

The six widely used methods (ANN, SVM, MissForest, 
KNN, MICE, and MNLR) are implemented in the R 
language. The simulation results presented in Table 2 show 

the RMSE, MAE, and MAPE values of the six predictive 
methods. As presented in the table, the result is not such 
promising and therefore these values reflect the incapability 
of the chosen methods on the time series data characterized 
by random-walk.

 

Table 2. Simulation results from the six most widely used predictive methods 

Method Execution Environment RMSE MAE MAPE 

MNLR N/A 12.77399 9.226775 34.34231 
Miss-Forest 8GB RAM, Co-i5, Max. iterations = Default, Sample Size = 16055, 

Training Data = 84154 
3.035463 2.732547 10.24622 

SVM 8GB RAM, Co-i5, Kernel = radio, Type = eps-regression,  
Training Data = 5000 

5.32299 3.15148 11.35937 

ANN 8GB RAM, Co-i5, No. Hidden Layers = 2, Hidden Neurons = 4  
,Threshold = 0.001, Algorithm = rprop+, Activation Function = Logistic, 
err.fct = sse, StartWeight= 1.3, StepMax = 20,000 

6.9456  7.466061 27.8525 

MICE 8GB RAM, Co-i5, Max. iterations = 150, M = 5, Method = sample 12.09854 9.361562 33.43858 
KNN 8GB RAM, Co-i5, variable = load, k = 6  2.960205 4.006625 14.47315 

 

5.1.4.  Effectiveness of the Proposed e-MNLR Model 
on the Random-walk Data 

The e-MNLR model presented in Fig. 5 produces 
equation (5) after applying the calibration process. The 
equation is then implemented in the R environment and its 
accuracy is evaluated in Table 3. As presented in the table, 
the e-MNLR seems to produce fairly promising results 
compared to the six counterpart methods. 

𝑦1 =  𝑥1".**l& ∗ 	𝑥4"."mno ∗ 	𝑥6D".mmon ∗ 𝑥8D&.l*&o ∗ 𝑥:p.llmo                                             
(5) 

Where 𝑦1 = load at a time (20 minutes), 𝑥1 = time value 
whose load is sought, 𝑥4 = day category number, 𝑥6 = GDP 
value of the current year, 𝑥8 = current population, 𝑥: = 
current number of customers. 

Table 3. Performance of the e-MNLR methods as 
compared to the six counterparts 

Method RMSE MAE MAPE 

MNLR 12.77399 9.226775 34.34231 
Miss-Forest 3.035463 2.732547 10.24622 

SVM 5.32299 3.15148 11.35937 
ANN 6.9456 7.466061 27.8525 
MICE 12.09854 9.361562 33.43858 
KNN 2.960205 4.006625 14.47315 

e-MNLR 2.109137 1.956039 7.787976 

 

5.1.5.  The Capability of the Proposed LF- AFDC 
The proposed LF-AFDC framework presented in Fig.7 is 

implemented in the R programming environment. The 
capability of the developed model to predict a load profile 
based on the fault and restoration information is then 
validated. Three testing cases are established in which the 
fault in the SDEPG is assumed. The information associated 
with the fault (fault time, fault date, restoration duration) is 
passed to the LF-AFDC system. In addition to that, other 
information such as GDP, number of customers, and 
population are assumed to be acquired in real-time from the 
designated agencies (NBS and TANESCO). 

 
Fig. 10. Test results from LF-AFDC system after predicting 

load profile based on fault and restoration trigger on (Saturday, 
2020-10-03) at 06:00 morning using 8-hours restoration duration 
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The first test case is the assumption that the fault has 
occurred on Saturday, 2020-10-03 at 06:00 AM using an 8-
hours restoration duration (repair time). From this 
information, the LF model was able to generate the load 
profile shown in Fig. 10. As it is seen in the figure, the output 
is the load profile starting from 6:00 to 13:00 time at 20-
minute intervals equal to the restoration duration. The GDP, 
the number of customers, and the population are assumed to 
be that of the year 2020. 

The second test case is the assumption that the fault has 
occurred on Sunday (2020-10-04) at 15:00 evening, with 
restoration duration assumed to be 8 hours. From this 
information, the LF-AFDC model was able to generate the 
load profile shown in Fig. 11. As it is seen in the figure, the 
output is load profile starting from 6:00 to 13:00 time at 20-
minute intervals equal to restoration duration. 

 
Fig. 11. Test results from LF-AFDC system after 

predicting load profile based on fault and restoration triggers 
on 4/10/2020 at 15:00 evening using 8-hours restoration 
duration 

 
Fig. 12. Test results from the LF system after predicting 

load profile based on fault and restoration triggers of Friday 
2/10/2020 at 06:00 am using an 18-hours restoration duration 

The third test case is the assumption that the fault has 
occurred on Friday 2/10/2020 at 06:00 Am using an 18-hours 
restoration duration. From this information, the LF-AFDC 
model was able to generate the load profile shown in Fig. 12. 
As presented in the figure, the output is the load profile 

starting from 6:00 to 13:00 time at 20-minute intervals equal 
to restoration duration. 

5.2. Discussion 
Firstly, this work has revealed the long-term power 

consumption distribution characteristics in Tanzania, such 
that future load analysis researchers can rely on. Secondly, 
this work has also revealed the existence of outliers in the 
load data such that further load analysis researchers can be 
aware of when dealing with load analysis works. Thirdly, in 
this work, the limitation of some widely used prediction 
methods to the random-walk data has been identified such 
that load analysts could think of ways to extend the existing 
methods. Fourthly, load analysis works such as forecasting in 
the areas whose data is characterized by random walk can 
adapt the e-MNLR model proposed in this work. Lastly, our 
LF-AFDC framework has shown great ability to generate 
load profile from the fault and restoration triggers using both 
long and short-term factors. This shows that the LF-AFDC 
model can effectively be applied to predict load demand 
which can be inferred by other agencies such as DERs and 
restoration controllers.  

6. Conclusion and Recommendations 
An effective LF-AFDC model that produces load profile 

from fault (fault time and date) and restoration (expected fault 
repair time) information in the SDEPG has been proposed in 
this work. The core forecasting part of the proposed approach 
has based on the extension of Multivariate Nonlinear 
Regression to accommodate long-term variables as well as 
random-walk data. Furthermore, the forecasting part (e-
MNLR) has been evaluated against two regression-based 
methods (MICE and MNLR) and four machine learning 
algorithms (ANN, KNN, SVM, and MissForest). However, 
despite the capability of the proposed mechanism to produce 
load profile in the automatic fault clearance using fault and 
restoration information, the extended Multivariate Nonlinear 
Regression model has yielded promising results on the 
random-walk data compared to its counterparts. 

This work has focused on developing a load demand 
forecasting mechanism in LF-AFDC, particularly in 
residential buildings due to the nature of the study area and 
available data. In addition to that, the LF-AFDC was 
expected to acquire the economic (GDP) and demographic 
indicators (number of customers and population) directly 
from the NBS and TANESCO agencies. Therefore, future 
research works may extend the output of this work to 
accommodate commercial areas as well as to establish direct 
communication with NBS and TANESCO data centers. 
Secondly, due to the challenge of data availability, this 
research is confined to the use of GDP, population, and the 
number of the customer as major economic factors in the 
model; for instance, the available electricity price data was 
just that of few years in such a way that its causality effect on 
electricity consumption cannot be deduced effectively. 
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Therefore, the direction of future work should also focus on 
extending the model functionality of this research work to 
include more long-term variables such as electricity price, 
degree of urbanization, and household economic level. 
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