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Abstract- The uncertain nature of wind energy is an issue in the smooth operation of grid connected wind farms.  Grid 
operations have to satisfy the stipulated grid codes for frequency control. In this paper, grid network that is made up of steam 
and hydro turbines are connected to three wind farms using different control topologies. The first wind farm consist of only 
fixed speed induction generator wind turbines. The second wind farm is composed of only variable speed Doubly Fed 
Induction Generator (DFIG) wind turbines. A flywheel based DFIG system is used in the third wind farm. The reference power 
of the DFIG in the third wind farm is controlled in such a way as to smoothen its output during dynamics periods, while at the 
same time generate excess kinetic energy in the flywheel which is injected into the system to improve its performance. A 
comparative study was carried out on the dynamic performance of the grid network considering the same wind speed condition 
for the three schemes used in the wind farms. The coordinated control scheme in the third wind farm enhances the frequency 
response and other variables of the power system. Simulations were carried out using Power System Computer Design and 
Electromagnetic Transient Including DC.  

Keywords Doubly fed induction generator, wind turbines, wind energy, frequency control, Stability.  

 

1. Introduction 

With tremendous rise in renewable energy penetration 
into the grid system, there is bound to be disturbance in the 
power network. Consequently, the grid network and its 
control associates are becoming complex by day. The 
penetration of wind power into operational power network 
causes frequency distortions due to the uncertain nature of 
wind energy. The automatic load frequency control can be 
used to maintain the grid system frequency by variation of 
the governor set points [1, 2].  

One of the major advantages of the use of the Doubly 
Fed Induction Generator (DFIG) in wind energy application 
is that only 20-30% of the DFIG rating is required for the 
power converters interfacing the rotor with the grid [3, 4].  
Apart from this, compared with the fixed speed induction 
generator used in wind power system, DFIG possess benefits 
like better wind energy capture, four quadrants active and 
reactive power regulation, cheap power converter system and 
reduced power loss, hence making the DFIG based variable 
wind speed turbine most popular [5].  

One of the major advantages of the use of the Doubly 
Fed Induction Generator (DFIG) in wind energy application 
is that only 20-30% of the DFIG rating is required for the 
power converters interfacing the rotor with the grid [3, 4].  
Apart from this, compared with the fixed speed induction 
generator used in wind power system, DFIG possess benefits 
like better wind energy capture, four quadrants active and 
reactive power regulation, cheap power converter system and 
reduced power loss, hence making the DFIG based variable 
wind speed turbine most popular [5].  

     Recently, the FES is used as a common solution for 
enhancing frequency and power quality control of grid 
connected wind farms. This is because it can offer high 
reliability, short response time, and low cost as compared to 
other solutions. In the literature, [28-30] presented the use of 
FES in enhancing the integration of wind energy system to 
power networks, by using it to compensate for wind power 
fluctuations. Consequently, a large FES can be used to 
regulate the frequency of a power network. However, the 
cost of the FES is high because of its components like mass, 
generator, cooling unit, bearings, and other ancillary devices. 
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Although, a small FES could be used to store fraction of 
energy is small quantity that is suitable for controlling wind 
energy variations. 

It was reported in [31-34] that the Braking Resistor 
could be used to improve the performance of grid connected 
wind farms. This is because it enhances the output and limit 
the speed of the turbine. In [35], the concept of the braking 
resistor in conjunction with ECS was used in improving the 
stability of the frequency of a grid connected multi-machine 
system in a wind farm.  

This paper tends to improve the performance of the 
frequency of a grid network using a coordinated flywheel 
based DFIG system. The considered model system is 
composed of a steam and hydro synchronous generators 
connected a three wind farms. Wind farm A has conventional 
squirrel cage induction generator wind turbines that is of 
fixed speed type. In wind farm B, the conventional DFIG 
induction generator wind turbines were considered. Wind 
farm C is composed of the proposed flywheel DFIG 
controller. During wind power dynamic periods, above the 
rated wind turbine speed, the excess kinetic energy generated 
is used to boast the frequency of the grid network. During 
periods of steady and low wind speeds, no excess kinetic 
energy is generated in in the flywheel system.  Simulations 
were run using the Power System Computer Aided Design 
and Electromagnetic Transient Including DC 
(PSCAD/EMTDC) platform [36]. The study was done using 
three natural wind speed data obtained from Hokkaido 
Island, Japan, for each generator in each wind farm. The 
simulation was carried out for three different scenarios, 
where each farm is connected to the grid network at a time 
under same conditions and wind speeds, for effective 
comparative study. The presented simulation results show 
the improved performance of grid connected wind farm C, 
conventional synchronous generators and the entire grid 
network using the latter scheme. 

 

2. Model System of Study 

       The model system of study is shown in Fig. 1. The wind 
turbines are modeled based on [33]. The power ratings of the 
steam and hydro synchronous generators are 30MW and 
20MW respectively. The power ratings of each wind turbines 
in the wind farms are 2.5MW each, however, for simulation 
case, three aggregated wind turbines of 10 MW capacity each 
were used in this study. The parameters of the wind turbines 
and synchronous generators are given in Table 1 [33, 35]. In 
the model system presented in Fig. 1, three wind farms were 
connected to an existing grid network made up of steam and 
hydro turbines. Wind farm A is made of three conventional 
fixed speed induction generator wind turbines. In wind farm 
B, the conventional DFIG wind turbine control strategy was 
used. Wind farm-3 is composed of three DFIG wind turbines 
with Maximum Power Point Tracking (MPPT) and flywheel 
based system for improved performance. Three natural wind 
speeds were used in the study for the three wind turbines in 
all the wind farms for effective comparison of the 

performance of the system. The parameters of the lines, 
transformers and loads are shown in the model system. 

3. The DFIG Flywheel System 

Figure 2a shows the control strategy of a conventional 
DFIG-based variable speed wind turbine used for wind farm 
B of this study. The DFIG flywheel energy system (Fig. 2b) 
consist basically of an induction machine of high inertia and 
a back to back converter system which is made up of a Rotor 
Side Converter (RSC) and Grid Side Converter (GSC). The 
operating principle is such that the rotating mass of the wind 
turbine can store and retrieve energy during operation. The 
excess kinetic energy stored by the flywheel turbine system 
is given by [37]:  

 
                                     (1) 

 
Where  is the rotational speed of the flywheel and  is 

the moment of inertia. The stored energy available in the 
flywheel is given by: 

 
               (2) 

 
From equation (1),   and  are the highest and 
lowest speeds of the flywheel system. Concerning the 
electrical side of the system, the stator circuit power 
exchange and the electrical torque of the wind generator is 
given as [38, 39]: 
 

               (3) 

                        (4) 

 
From equations (3) and (4),   is the electrical angular 

velocity (  is the stator linkage flux,  
is the magnetizing inductance,  is the stator inductance, 
and  is the conjugate of the rotor current.  

Considering the Clarke and Park transformation, the rotor 
reference frame can be used for abc to dq conversion. The 
rotor current from equations (3) and (4) can be expressed in 
the dq frame as [40, 41]: 

 
                        (5) 

Putting equation (5) into (3) and (4) respectively, gives: 
 

                                                                  (6) 
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Thus, the active and reactive powers of the stator are the 

real and imaginary parts of equation (6) as shown below: 
 

              (8) 

 

         (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The electrical torque and the stator power of the DFIG wind 
generator can be controlled with the help of the rotor current 
as shown in equations (7), (8) and (9) respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.1.1 Model system 
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4. The Proposed DFIG Control Strategy 

The proposed DFIG control strategy for frequency 
control based on the flywheel energy system and coordinated 
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Generator 

Type 

SG1 SG2 Generator 

Type 

IGs DFIGs 

MVA 30 20 MVA 15 15 

ra (pu) 0.003 0.003 r1 (pu) 0.01 0.01 

xa (pu) 0.102 0.130 x1 (pu) 0.1 0.15 

Xd (pu) 1.651 1.200 Xmu (pu) 3.5 3.5 

Xq (pu) 1.590 0.700 r21 (pu) 0.035 0.01 

X/d (pu) 0.232 0.300 x21 (pu) 0.030 0.15 

X/q (pu) 0.380  r22 (pu) 0.014  

X//d (pu) 0.171 0.220 x22 (pu) 0.098  

X//q (pu) 0.171 0.250    

T/do (sec) 5.900 5.000    

T/qo (sec) 0.535     

T//do(sec) 0.033 0.040    

T//qo(sec) 0.078 0.050    

H (sec) 3.500 2.500   1.500 

 

Table 1 Generator Parameters 

(a).  Conventional DFIG control strategy (wind farm B) (b). Flywheel system 

 
Fig 2.  DFIG wind turbine system 
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MPPT control is shown in Fig. 3. The Phase Locked Loop 
(PLL) control strategy for the DFIG wind generator is shown 
in Fig 4. 

In Figure 3, the rotor side converter of the DFIG is 
controlled based on the available wind speed (A, B or C) in 
the model system, the rotor speed W1, the grid voltage Vg 
and the grid power Pg respectively. The detected real and 
reactive power of the grid (P1, Q1) for each side of the DFIG 
wind generator are also used for the control of active and 
reactive power of the DFIG.  The effective synchronization 
of the grid voltage is carried out with the help of the PLL, 

is the angle that is used for abc to dq and dq to abc 
conversion. The coordinated control of the PLL scheme for 
the three DFIG wind generators in wind farm C is shown in 
Fig. 5. The reference power calculation is carried out to 
generate a smoothed reference power to help in frequency 
control during periods of dynamics or disturbances in the 
power system due to wind speed changes as shown in Fig. 6. 

      The reference power is calculated based on the wind 
speed data from the wind turbine. The MPPT powers are 
obtained which are further used to calculate the reference 
power for each DFIG wind generators. The summation of the 
reference powers for the DFIGs are added to generate the 
smoothed reference power ( ) of the DFIG, which is- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
-used by the three DFIGs in wind farm C as shown in Fig. 7. 
The d-axis current is used to control the q-axis reference 
voltage, while the q-axis current is used to control the d-axis 
reference voltage. After a dq to abc transformation, the 
reference voltage are compared with a signal generator of 

frequency 2kHz, which is now used for the switching of the 
Insulated Gate Bipolar Transistors (IGBTs) in the Pulse 
Width Modulation (PWM) scheme of the DFIG wind 
turbine. 
   The mechanical torque and the excess kinetic energy 
calculations based on the natural wind speed are shown in 
Fig. 8. During periods of high wind speeds above the rated 
turbine wind speed, excess kinetic energy is developed which 
is stored in the flywheel and used as energy storage to 
improve the frequency of the grid system. From Fig. 8, the 
coordinated control of the pitch angle controller, mechanical 
torque and the excess kinetic energy developed in the system 
is achieved via the design values shown in the figure. The 
pitch controller controls the rotor speed within the rated 
value of 1.3pu, based on the wind turbine characteristics. The 
output of the pitch angle in conjunction with the parameters 
of the wind speed is used in developing the mechanical 
torque which is transmitted via the drive train model to turn 
the DFIG wind generator. The excess kinetic energy 
developed which is in based on the wind speed, the wind 
generator inertia, rotor speed and power capacity of the wind 
turbine is shown also in Fig. 8.   
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Fig 3.  Proposed DFIG MPPT system in wind farm C 
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Fig 4.  Control strategy of the Phase Lock Loop (PLL) in wind farm C 
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Fig 7.  DFIG smoothed reference power in wind farm C 

 

 

Fig 8.  Coordinated control of the pitch control and excess kinetic energy 
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5. Simulation Results and Discussions  

   Simulation was carried out considering the model system 
presented in Fig. 1, using wind speed data (Fig. 9) obtained 
from Hokkaido Island in Japan. The simulation was run for 
600 seconds in PSCAD/EMTDC platform, to demonstrate 
the rigidity of the controllers employed in the system. The 
same wind speed data were used for the three wind farms for 
effective comparative study. The wind farms were connected 
one at a time to the existing grid. 

     From Fig. 10, the frequency distortion during dynamics 
was much considering the use of the fixed speed induction 
generator wind turbines in wind farm A and the conventional 
control strategy for DFIG wind turbines in wind farm B. This 
is because these wind turbines lack the capability to control 
the frequency of the system. Consequently, the grid 
frequency reaches about 47 pu during the grid dynamics, 
which would lead to the shutdown of the wind farm based on 
the stipulated grid requirement of minimum value of 49 Hz. 
The use of the proposed coordinated control for the DFIG 
wind turbines in wind farm C in Fig. 10 shows improved 
performance of the grid frequency during the grid dynamics, 
in order to suit the grid codes which requires a minimum of 
49 Hz frequency dip. The excess kinetic energy developed by 
the DFIG wind turbines flywheel system based on the control 
strategy in Fig. 8, is shown in Fig. 11. From Fig. 11, more 
kinetic energy was generated for energy storage in DFIG-2 
because of the nature of the wind speed for speed B as shown 
in Fig. 9. DFIG-3 in wind farm C has less developed kinetic 
energy during the system dynamics based on wind speed C. 
This is due to the fact that wind speed B is higher above the 
rated DFIG wind generator wind speed, between 0 to 150 
seconds, and lower than the rated DFIG wind generator wind 
speed, between 150 seconds to 300 seconds. In this period, 
zero kinetic energy is developed, for energy storage, while 
from 300 seconds to 600 seconds, more kinetic energy was 
developed again, thus, showing the effectiveness of the 
controllers during grid dynamics.    

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The responses of the synchronous generators in the wind 
farms are presented in Figs. 12 and 13 respectively, where 
more distortions in the variables of the synchronous plants 
were obtained in wind farms A and B, where no control 
strategy was implemented.  

       The rotor speeds of the DFIG wind generators are shown 
in Fig. 14 for wind farm-C. Based on the control strategy 
implemented in Fig. 8 for the pitch control of the DFIG 
system and the turbine characteristics used for this study, the 
rotor speed is operated within 0.7 pu for minimum speeds 
and 1.3 pu for maximum speeds, considering the nature of 
the wind speeds displayed in Fig. 9. 

 

6. Conclusion  

    It is imperative to mitigate the fluctuations in grid 
connected wind farms considering recent grid codes for 
optimum and effective operation of power networks made up 
of multi-machine systems. The performance of a variable 
speed wind turbine that is DFIG based considering a 
coordinated control of the maximum power point tracking 
and a flywheel system to smoothen the reference power of 
the wind turbine during dynamics has been presented in this 
paper. The control strategy makes the use of excess kinetic 
energy that is generated in the flywheel system based on the 
nature of available wind speeds. The proposed control 
strategy of the DFIG for frequency control was further 
compared to other configurations of wind farm considering 
no control strategy. The responses of the grid frequency, 
power network and other variables of the grid connected 
wind farm, show improved performance during periods of 
grid dynamics.  
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Fig 14.  Rotor speeds of DFIG wind generators in wind farm C 
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