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Abstract- The two main reasons for the increase in carbon emissions are the use of fossil fuel resources in the transportation and 

energy sector. It is possible to reduce these emissions significantly by expanding Electric Vehicles (EVs) in the transportation 

sector and renewable energy sources (RES) in electric power generation. While the adoption of EVs is still struggling for various 

reasons, such as battery costs and reduced range, rising fuel prices combined with government policy sanctions and incentives 

are increasing the need for EVs. The increased penetration of EVs on the grid is likely to pose a very complex operational 

problem. Therefore, this penetration can result in overloading of the infrastructure equipment in the distribution system and a 

power outage. This study focuses on the coordinated charge scheduling for EVs with a photovoltaic (PV) system as one of the 

Renewable energy sources for seamless integration of EVs into the grid. In this paper, charge scheduling of EVs has been made 

by considering the EV battery state of energy (SoE) value. Mixed Integer Linear programming (MILP) technique is used for the 

charge scheduling model of EVs. Thus, the charge scheduling of EVs is made within the allowable limits in the grid. It is also a 

systematic reference work in the proposed approach because of the load balancing of the EVs with the power supplied from the 

PV system. 
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1. Introduction 

Today, the power generation and transportation sectors 

face various challenges related to greenhouse gas emissions, 

climate change and the fuel crisis [1]. People tend to prefer 

electric vehicles (EV) for transportation due to increasing fuel 

costs in the world [2,3]. Day by day, the use of EVs, which 

provide longer range travel, is becoming more and 

increasingly interesting as battery technologies improve and 

become cheaper. However, the increase in the number of 

electric vehicles on the roads increases energy demand in the 

distribution network [4]. Due to the stochasticity of EV users' 

movement behavior and charging habits, their aggregate 

demand in power grids remains uncertain. An EV penetration 

higher than expected can have negative effects such as voltage 

drop, power losses and overloads in the power system [5]. It 

was previously thought that production capacity and 

infrastructure could be upgraded to reduce and minimize these 

effects [6]. However, this approach is significant in terms of 

both time and cost for grid operators, EV users and 

homeowners. 

EV chargers are classified as onboard, or off-board 

chargers based on the location of the battery power converter 

unit. While onboard chargers charge from the mains in a few 

hours at normal power, off-board chargers are used for fast 

charging at high power and in a shorter time. The maximum 

charging power of an EV powered by most on-board EV 

chargers is about 4 times the load demand of an average 

household [7]. The overall charging power profile of EVs has 

two peaks per day, based on session times at work and at 

home. The large energy demand from many EVs, with its 

addition to the baseload profile, can overload the power grid 

or affect the daily load profiles at a common node in the 

distribution line [8]. 
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Most EV users park their vehicles for most of their daily 

mobility behavior. It is assumed that charging most EVs with 

high-battery capacities for approximately 1.7 h at 12 kW or 7 

kW is sufficient to meet transportation needs [7]. This could 

allow flexible charging scheduling of EV charging, showing 

that the vehicle does not need to start charging immediately 

after plugging in. In this way, the charging power can be 

shifted to different time zones. 

Various data about EVs are produced by recording EV 

charging session data and daily motion behavior [9]. The use 

of this data is critical in determining the peak load and hours 

of increasing EVs in the grid. [10]. Additionally, power 

reduction strategies can be deployed in the grid as needed, 

owing to the predictions made based on these data [11]. 

However, recording and storing these data are considered an 

additional network cost for distribution network operators and 

charging stations. Additionally, data analysis companies allow 

very limited or limited sharing of high-resolution EV charging 

session data collected from charging station and network 

operators due to their privacy policies [12]. For this reason, 

the travel data of conventional internal combustion engine 

(ICE) vehicle users specified in the national household travel 

survey (NHTS) are used instead of EV charging session data 

in the literature [13]. information such as arrival time and 

departure times of real EVs is produced by using the 

probability distributions of these travel data. However, the 

actual EV charge load profile is created by obtaining useful 

information from vehicle manufacturer catalogs, such as 

driving distance, maximum charge power and EV battery 

capacity [14]. Based on these catalog data, the researchers 

created real EV charge-load profiles with synthetic data 

generators [15]. 

Optimal EV charge scheduling using real EV charge 

session data [16] or synthetic data generator data [15] to create 

EV charge-load profiles is a potential area of study. Thus, load 

reduction, load limiting, and load shift strategies can be 

implemented for increased EV penetration in the grid. 

Additionally, load balancing with renewable energy sources is 

of great importance at this stage. In the literature, predictive 

load balancing of electric vehicles with an intelligent 

coordination has been proposed [8]. However, these tools have 

not yet evaluated load balancing and load scheduling together. 

An optimal scheduling would operate to keep the bulk 

charge power of incremental EVs on the grid within allowable 

limits [17, 18]. Therefore, charge scheduling is a potential 

solution to mitigate the negative impact of large-scale EV 

charging demand on the grid [19]. The movement behavior of 

each EV user and the charging power of their vehicles can be 

taken as the basic parameters in charge scheduling [20, 21]. 

To estimate these two parameters, Monte Carlo Simulation 

(MCS) was used to determine the EV travel times of ICE 

vehicles according to a probability distribution function in the 

NHTS questionnaire [22, 23]. To accurately model and predict 

EV charge times, waiting times of EVs is generated by MCS 

according to NHTS probability distribution functions in this 

study. Additionally, real EV data are used for the initial energy 

states in EV batteries. Thus, it is aimed to increase the 

performance in EV charge scheduling with real EV battery 

energy states and NHTS survey data. 

In this study, charge scheduling of EVs is performed using 

Photovoltaic (PV) based coordination. The EVs are intended 

to be charged on the grid under a certain power limit. Mixed 

Integer Linear Programming (MILP) technique [23-25] was 

used to model the charging demand of total electric vehicles. 
A coordinated charge scheduling of the PV system and EVs 

has not yet been investigated in the literature. This study offers 

the opportunity to examine the charge scheduling of PV 

system powered EVs at a node in a distribution grid.  order for 

the charging power to be at the allowable level in the grid, the 

charge load of the EVs is always distributed within the limits. 

The main contributions of this article can be summarized as 

follows: 

• Load balancing of EVs by using the PV system. 

• Individual coordinated charge scheduling considers the 

standby times and battery energy states of the EVs. 

• Introducing many EVs into the grid in one day, relative 

to the cap on aggregate EV charging demands on the grid. 

The remainder of this paper is structured as follows: The 

aggregated charging demands of EVs are described in Section 

2 using MCS-based waiting times and battery initial state of 

energy. Coordinated charge scheduling of the PV system and 

EVs sample IEEE test system model and simulation results are 

given in Section 3. Finally, the results are presented in detail 

in Section 4.  

2. Aggregated EV Charging Demands 

The increasing fossil fuel prices ensure that EVs and RES 
with low carbon emissions are preferred in energy and 
transportation [26]. Interest in environmentally friendly EVs in 
transportation and their charging from PV systems are 
increasing day by day [27]. Additionally, incentive decisions 
for solar PV systems and EVs in line with zero emission target 
countries have recently resulted in a sharp increase in EVs on 
the roads. However, the increasing number of EV points to 
many difficulties in the electrical grid. Electric vehicles can 
draw an average of 8 kW of power per hour in a charging 
session [7]. According to the load profiles of EVs, the bulk 
charging demands generate two peak loads, morning, and 
evening. Accordingly, EV charge demand management with 
an appropriately coordinated charge scheduling can both 
reduce grid overload situations of EV charging and enabling 
the integration of more EVs into the grid. However, the EV 
user charging behaviors, which include charging start time, 
dwell time, and energy demand, is stochastic. Therefore, this 
section aims to model EV user behavior to improve the 
performance of data-driven charge-load profiles before 
scheduling EVs. 

2.1. Battery Charging Model and Charging Sessions for EVs 

The aim of this section is to obtain with MCS each EV user 
mobility model based on the NHTS survey [22]. Accordingly, 
the EV user behavior model is based on the probability 
distribution function of the NHTS. The 𝑖. EV user charging 
behavior is included to charge start time, 𝑡𝑖

𝑠 waiting time, 𝑡𝑖
𝑤 

maximum charging power 𝑃𝑖
𝑚𝑎𝑥 and expected state of energy 

(SOE) 𝐶𝑖 for each EV. These charge parameters are of great 
importance for making decisions of EV user attend scheduling. 
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More specifically, when a charging session begins for an EV 
user, a coordinated charge scheduling tool within energy 
management considers the waiting time and battery SOE value 
to determine the energy delivery process. It is assumed that the 
EV users in our model drive all day of the week. The charging 
start time and waiting times are expressed using frequency 
values by time of day, as in the case studies on NHTS [28–30]. 
Therefore, the waiting time of the 𝑖. EV calculation can be 
expressed by Eq. 1 using the charging start time 𝑡𝑖

𝑠 and the 
charging end times 𝑡𝑖

𝑒. 

   𝑡𝑖
𝑤 = 𝑡𝑖

𝑒 − 𝑡𝑖
𝑠             (1) 

Also, the hourly instantaneous SoE value of the 𝑖. EV  

𝑆𝑜𝐸𝑖
ℎ relates to the initial state of energy of each EV battery 

𝑆𝑜𝐸𝑖
𝑖𝑛𝑖𝑡, the charging start time, the instantaneous charge 

power, 𝑃𝑖
𝑐ℎ and the waiting time, such that the sum of the 𝑆𝑜𝐸𝑖

ℎ 
values and the initial state of energy for the 𝑖. EV gives the 

maximum SOE value.𝑆𝑜𝐸𝑖
𝑚𝑎𝑥  The 𝑆𝑜𝐸𝑖

ℎ and the total energy 
consumption for each EV are given in Eq. 2 and Eq. 3, 
respectively. However, the cumulative energy consumption of 
an EV battery is limited to the maximum battery capacity 
𝑆𝑜𝐸𝑖

𝑚𝑎𝑥 . Additionally, it is assumed that the minimum SoE of 
each EV will start to charge above 20%. 

𝑆𝑜𝐸𝑖
ℎ = 𝑆𝑜𝐸𝑖

𝑖𝑛𝑖𝑡 + ∑(𝑃𝑖
𝑐ℎ ∙ 𝑡)       𝑡 ∈ [𝑡𝑖

𝑠, 𝑡𝑖
𝑠 + 𝑡𝑖

𝑤]                (2)               

𝑆𝑜𝐸𝑖 = ∑ 𝑆𝑜𝐸𝑖
ℎ               0.20 ∙ 𝑆𝑜𝐸𝑖

𝑚𝑎𝑥 ≤ 𝑆𝑜𝐸𝑖 ≤  𝑆𝑜𝐸𝑖
𝑚𝑎𝑥             (3)

  

Similarly, EVs are charged within the range of values 
specified in Eq. 4 in the coordinated charging schedule. the 
authors previous study was given detailed about this 
methodology in [31]. In the proposed method, maximum 
charging power 𝑃𝑖

𝑚𝑎𝑥 is used before the specified value of 

𝑆𝑜𝐸𝑖 = 73% ∙ 𝑆𝑜𝐸𝑖
𝑚𝑎𝑥  as the starting point of the constant 

voltage charging mode. However, the EV maximum charging 
power may vary within the limits of the distribution grid and 
the charging station. When the total SoE value 𝑆𝑜𝐸𝑖  of an EV 
is more than 73%, the battery continues with 3.17 times the 
inverse function of the natural logarithm based on the actual 
charge data. It is assumed that the EVs plug out at the sum of 
the instantaneous SoE values drawn from the grid and the 
initial SOE values are equal to 𝑆𝑜𝐸𝑖

𝑚𝑎𝑥, or at the end of their 
waiting time. 

𝑓(𝐶𝑖) = {
𝑖𝑓 𝑆𝑜𝐸𝑖 < 73% ∙ 𝑆𝑜𝐸𝑖

𝑚𝑎𝑥 , 𝑃𝑖
𝑐ℎ = 𝑃𝑖

𝑚𝑎𝑥

𝑖𝑓 𝑆𝑜𝐸𝑖 ≥ 73%, 𝑃𝑖
𝑐ℎ = 3,17. 𝑃𝑖

𝑚𝑎𝑥 . In(𝑆𝑜𝐸𝑖/𝑆𝑜𝐸𝑖
𝑚𝑎𝑥)

}         (4) 

2.2. The Aggregated EV-Charging Demand Model with MCS 

EV user behavior is a key determinant of stochastic EV 
charging demand. Users' stochastic charging behavior also 
makes many parameters uncertain, such as charging start times, 
standby times, and battery start-up SoE. At work or on arrival 
at home, the charging start times of EVs reach their peak value. 
Therefore, the approximate charging start times of the EVs 
appear to be a two-piece wise normal distribution after curve-
fitting tool via MATLAB software. 

EV users can charge their vehicles at work, in public and at 
home. However, studies advocating that EV users use charging 
behavior at home are in the majority. In this study, home 
charging is considered. Additionally, the arrival time of the 
EVs, the time to start charging and the time they stand in the 
park are considered as charging standby time. According to the 

NHTS survey [26], charging start times are expressed as a two-
part normal distribution in 12-hour time periods in a day, as in 
Equation 5 and Equation 6. Accordingly, the curve obtained 
using the curve fitting method is shown in Fig. 1. Linear 
interpolant 𝑓(𝑡𝑠) equals a piecewise polynomial computed 
from probability where x is normalized by mean 12.5 and 
standard deviation 7.07. Additionally, the starting times of 
charge according to the probability distribution functions are 
presented in Table 1 by calculating the mean and standard 
deviation values in the form in the morning and the afternoon.  

𝑓(𝑡𝑠) =
𝑒

−
(𝑡𝑠−𝜇𝑠)2

2𝜎𝑠
       2

𝜎𝑠√2𝜋
 ,      𝜇𝑠 − 12 ≤ 𝑡𝑠 ≤ 24                        (5) 

𝑓(𝑡𝑠) =
𝑒

−
(𝑡𝑠+24−𝜇𝑠)2

2𝜎𝑠
       2

𝜎𝑠√2𝜋
  ,  0≤ 𝑡𝑠 ≤ 𝜇𝑠 − 12                                (6) 

 

Fig. 1. The probability distribution curve of charging start 

time  

Table 1. Calculated standard deviations and means 

Time Mean (σ) Standard 

Deviation (µ) 

0 ≤ ts ≤ 12 8.4 1.2 

12 < ts <24 18 1.33 

 

The initial SoE value of the EVs is calculated by 
subtracting the battery SoE value consumed while commuting 
to and from the workplace from the maximum SoE value of the 
EVs. In [24], the probability curve of the initial SOE values of 
the EVs when they come to charge is a beta probability 
distribution with a beta value of 3.27 and an alpha value of 
3.28. The probability distribution of EVs versus battery initial 
SoE values is shown in Fig. 2. 

 

Fig. 2. The probability distribution curve of battery initial SoE 
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 In this paper, MCS simulations are used to model the 
charging behavior of 50-EV users. Accordingly, it is assumed 
that the maximum battery capacity of all EVs is equal to 50 
kWh and the charging power is equal to 7 kW. Charging 
sessions of EV users are sampled according to the MCS results. 
In this context, charging start times, standby times and first 
battery SoE values of 50 EVs are summarized in Table II with 
their standard deviation and average values. As seen from this 
table, the charge starts and initial battery capacities of all EVs 
are very close to the average and standard deviation values in 
the probability distribution function. In the next section, a 
coordinated charge scheduling will be made, considering grid, 
EV user and EV battery constraints, using charge start times, 
waiting times and initial SOE values for all EVs. 

Table 2. Monte Carlo simulation results 

EV Specifications at the charging sessions 

Statistical Parameters 
Morning Afternoon 

Unit of 

parameter 

Mean of waiting time (hours) 8.91 17.11 hours 

Standart Deviations of 

charging start time (hours) 
1.41 2.76 hours 

Mean of charging waiting 

time (hours) 
6.47 10.74 hours 

Standart Deviations of 

charging waiting time (hours) 
2.91 3.42 hours 

Mean of Battery initial SoE 

(kWh) 
26.3 24.81 kWh 

Standart Deviations of 
Battery initial SoE (kWh) 

6.94 8.44 kWh 

3. Scheduling of EV Charging 

The uncoordinated charging of EVs can strain the local grid 
without an appropriate charging scheduling strategy. That's 
why researchers are increasingly focusing on charge 
scheduling strategies to enable coordinated charging of EVs 
with the grid. Large-scale EV charge allocation is a challenging 
area of research that has yet to be resolved. This is because, as 
discussed in section 2, various uncertainties exist due to the 
behavior of stochastic EV users, such as battery state of charge, 
charge travel and waiting times. Therefore, it cannot be 
predicted exactly when the increasing EVs will generate a large 
power demand that exceeds the grid capacity. PV system 
supported charging stations can be recommended as a suitable 
control method for prevent these uncertainties in a way. 
Additionally, dynamic electricity price and EV charging times 
can be changed significantly during the day to take advantage 
of the PV system. Shifting EV users' movement habits, such as 
commuting and arriving times during the day, is not a flexible 
solution. However, performing power management with an 
appropriate EV charge scheduling may be one of the most 
effective EV charge coordination methods. 

In EV charge scheduling studies, researchers have studied 
two main approaches, centralized and distributed architectures. 
decentralized architecture manages EVs [32]. The purpose 
function of each charging station may differ. The centralized 
architecture directly controls all EVs from a main control 
center. It also solves a single control center optimization 
problem. The centralized architecture has the principle of 
exchanging information from all EVs and centrally optimizing 
charging schedules. Therefore, the information privacy 
problem arises for centralized architectural EV owners. Also, 
data processing is difficult with high EV penetration. However, 
the distributed architecture is more flexible to control large 

population EV charging. In this method, the control center can 
communicate with the EV charger to perform coordinated 
charge scheduling. 

Recently, distributed architecture has been studied in EV 
charge scheduling. Therefore, in this study, EV load scheduling 
was performed in a distributed architecture. In EV load 
scheduling, EV dwell time and battery start SoE samples are 
obtained by MCS considering the probability distributions of 
user behavior. Additionally, the charge period of each EV is 
cumulatively summed by considering time zones to create a 
realistic EV bulk charge profile based on the MCS results. This 
coordinated charge planning algorithm combined with EV user 
behavior is proposed to avoid grid overload. Additionally, 
charge-load balancing of EVs was ensured with the PV system 
having a peak power generation capacity of 60 kW. Here, the 
total EV charge demand cap is assumed to be 100 kW per hour. 
Eq. 7 defines the total charging costs of the EVs and imports 
them into the General Algebraic Modeling System (GAMS) 
software environment, along with the constraints in the 
previous equations. Coordinated charge scheduling adjusts the 
charge powers within the standby times of the EVs. 
Additionally, the total charging power here is reduced by 
balancing the load with the PV system. thus, peak occurrences 
in the grid are always kept within the allowable values, 
allowing more EVs to be integrated into the grid. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥) = ∑ ∑ 𝑋. (𝑃𝐸𝑉
𝑐ℎ(𝑖, 𝑡))36

𝑡=1
50
𝑖=1                          (7) 

 In the GAMS code, three basic components are defined as 
inputs, structures, and results. Data types such as scalar 
numbers, sets, variables, and tables are defined in the input 
component. As a scalar, the constant X value of the charging 
cost per kWh is equal to 1.5 TL. During scheduling, the 𝑡 time 
interval is 1 h and the total 𝑡 value is taken as a one-and-a-half-
day period and 36-hour time zone. Thus, the sum of the 
instantaneous SoE values for each EV as it leaves the charging 
station is given in Fig. 3. The minimized energy consumption 
cost that all EVs will pay to the distribution company within 
the specified one-and-a-half-day period is equal to 1535.71 TL. 

 

Fig. 3. The sum of the instantaneous SoE values for each EV. 

The EV 16, EV 30, EV 32, and EV 49 batteries could not 
reach the maximum SoE value due to the short charge standby 
times.  
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3.1. IEEE 33 Test System Model and Simulation Results 

The charging sessions of the EVs in a one-and-a-half-day 
period over the digsilent software are modeled as in Fig. 4 over 
the IEEE 33 busbar test system.  

 

Fig. 4. Integration of EVs into the grid test system. 

Performing the modeling on IEEE 33 bus test system, a 
transformer at a voltage level of 10/0.4 kV with a power of 0.1 
MVA on bus 18 is used for the grid integration EVs. After 
simulation, the hourly total charging power of the EVs over a 
one-and-a-half-day period is shown in Fig. 5. 

 

Fig. 5. The total charging power of the EVs. 

In the case of uncoordinated charging without coordinated 
charge scheduling, the total charge demand of EVs can 
stochastically reach up to 350 kW at maximum power at any 
time. For this reason, as the total grid reaches its limit, a power 
outage or overload may occur in the grid equipment as a result. 
However, the proposed coordinated charge scheduling ensures 
that all EVs operate within grid allowable limits of 
approximately 60% of the total charge demand. 

 The final SoE values of each EV battery versus the 
charging waiting time are presented in Fig. 6 with a three-
dimensional view.  

 

Fig. 6. The final SoE values of each EV battery versus 

charging waiting times. 

It can be seen from Fig. 5 above that EV batteries are not 
always charged during their charging waiting time. Therefore, 
most of the waiting times between the arrival and departure 
times of the vehicles are spent as idle time.  

3.2. Load Balancing with PV System  

Coordinated charge scheduling can allow EV users to charge 
while the PV system is running, benefiting from a lower cost 
of charging. Also, the load balancing capability of the PV 
system, the proposed scheduling approach can further reduce 
the total charging demand, which is beneficial for distribution 
grid operators. Thus, new electric vehicles on the grid are also 
allowed to be charged and existing EV users will be relieved of 
their charging concerns and needs. In this way, a PV system 
with a peak power generation capacity of 50 kW [8] is 
connected to the busbar to which the EVs are connected in the 
IEEE 33 busbar test system. The power produced by the PV 
system in the real world and the total EV demand in the grid 
are given together in Fig. 7. 

 

Fig. 7. The PV system generation and total charging power of 

the EVs. 
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 With the load balancing capability of the PV system, the 
maximum peak load of the EVs was further reduced. 
Additionally, the load level in the distribution transformer is 
shifted to a different point during the day as in Fig. 8.  

 

Fig. 8. The loading conditions of the transformer. 

Also, this loading condition on the transformer was reduced by 
10% more at peak times. As a result, with coordinated charge 
scheduling for EVs, the load situation on the grid can be 
reduced to a certain level. However, if more EVs are included 
in the grid, incorporating the PV system and load balancing 
strategy into the recommended charge scheduling prevents 
overloading of grid equipment such as transformers. 
Additionally, the power outage problems of the increasing EVs 
in the grid can mostly be avoided thanks to the PV system. 

4. Conclusion 

Recently, plug-and-charge strategies of electric vehicles 
have become a problem for grid operators. Charging electric 
vehicles with the coordinated charging schedule proposed in 
this study makes a great contribution to grid operators in terms 
of relieving the distribution grid. 50 EVs coordinated charge 
planning was carried out in the GAMS software using mixed 
integer linear programming and the EV load on the grid was 
reduced to 60%. Additionally, the load balancing strategy with 
the PV system further reduces the charge load and facilitated 
grid integration of new or outstanding EVs. As a result, the 
proposed method has the great advantage of reducing overload 
situations in grid equipment, allowing for greater EV 
integration. It is a vital work for future studies that apply both 
load smoothing and load balancing strategies under a single 
roof by making charge scheduling in coordination with the PV 
system. 
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