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Abstract- Recently, the research emphasizes the importance of professional inspection and repair in case of suspected faults in 

Photovoltaic (PV) systems. The detection of faults in Photovoltaic (PV) systems is a critical aspect of maintenance, and machine 

learning models have emerged as valuable tools for this purpose. This study focuses on fault detection in a simulated 0.25 MW 

PV power system, utilizing various machine learning algorithms. The dataset comprises normal operation and different fault 

scenarios, spanning multiple fault types, with 26 predictor variables. Four machine learning algorithms, including Extreme 

Learning Machine (ELM) with different hidden node configurations (L=100 and L=200), Linear Discriminant Analysis (LDA), 

Support Vector Machine (SVM), and Neural Network, are evaluated through 10-fold cross-validation. The results demonstrate 

robust performance across all models. ELM (L=200) exhibits the highest accuracy, with 99.1663% during validation and 

97.9727% on the test data, achieving a balance between accuracy and training time (0.1709 seconds). ELM (L=100) also shows 

strong performance with 98.3416% validation accuracy and 97.9592% on the test data, while LDA achieves 94.0298% 

(validation) and 90.8163% (test), SVM reaches 97.0149% (validation) and 96.4591% (test), and Neural Network attains 

95.5224% (validation) and 94.9388% (test). ELM, especially with L=200, emerges as a superior choice for accurate and efficient 

fault detection in PV systems, highlighting its potential for real-world applications. 

Keywords: Photovoltaic (PV), Fault detection, Extreme Learning Machine (ELM), Grid-connected system. 

 

1. Introduction 

Solar panels are intended to convert sunlight into power 

[1, 2]. Solar power plants are often made up of several solar 

panels stacked together. These panels may face a variety of 

faults throughout their operation, including electrical, 

mechanical, or thermal concerns. These problems have a 

detrimental influence on the performance of the panels and, in 

some cases, lead to their destruction or have an impact on 

other components engaged in the operation. The presence of 

faulty panels not only degrades the overall efficiency of the 

solar plant but also results in increased operational costs. To 

mitigate these costs and potential consequences, it is crucial to 

detect these malfunctions as early as possible. Typically, 

companies employ specialized teams to inspect the condition 

of the panels, analyzing the I-V curves or visually examining 

them for anomalies. Alternatively, thermal cameras mounted 

on drones can be utilized to identify hot spots on the surface 

of the panels [3-5]. 

However, many of the existing detection methods are 

expensive and time-consuming, often resulting in a delay of 

up to a year before faults are discovered. This delay can have 

a significant financial impact on the companies responsible for 

operating the solar plants. By promptly identifying anomalies 

using cost-effective methods, both the consequences of 

failures and the associated expenses can be minimized, 

thereby reducing the operating costs of power plants. Machine 

learning enhances fault detection and isolation by monitoring, 

detecting, identifying fault types, and reducing unnecessary 

procedures. It utilizes algorithms such as supervised learning, 

unsupervised learning, and reinforcement learning. These 

algorithms continuously analyze system data to detect faults, 

determine their types, and locate them, minimizing 

productivity loss and preventing unexpected incidents.  

Machine learning optimizes processes and promptly fixes 

errors via adaptation and improvement, leading to effective 

system performance. It's a potent instrument for improving 

workflow and preventing disruptions in system performance 

via early detection and correction of problems. Partial shading, 
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module degeneration, and cell fractures are just some of the 

problems that may be detected and categorized by the system, 

which makes use of data including voltage, current, and 

temperature readings [6-12]. Extreme Learning Machines 

(ELM), a machine learning method with a rapid training speed 

and strong generalization performance [13], has showed 

potential in the field of Photovoltaic (PV) defect detection. 

In this work, for PV fault detection a different machine 

learning models were used. The training and testing datasets 

encompassed normal operation and various fault scenarios is 

used. The factors such as current, voltage, power, temperature 

was measured and exploited as features. In addition, four 

algorithms (Tree, LDA, SVM, and ANN) were tested using 

10-fold cross-validation to identify errors in the PV system. 

2. External Learning Machine 

Extreme Learning Machine (ELM) is a feedforward 

neural network with a single hidden layer (SLFN) that 

randomly initializes the input weights and biases, reducing the 

need for time-consuming iterative training. The hidden layer 

of the network converts the input data into a high-dimensional 

feature space, and the output weights are calculated 

analytically using a least-squares solution. ELM is an 

appealing solution for PV fault detection applications due to 

its simplicity and computational efficiency [14]. ELM has 

been effectively used to a variety of applications in the area of 

PV fault detection. ELM has been used, for example, to 

discover and categorize many sorts of problems in PV 

systems, such as module deterioration, shading, and 

connection difficulties [15].  By training an ELM model on a 

dataset of labelled fault data, the algorithm can learn to 

distinguish between normal and faulty operating conditions 

with high accuracy. Furthermore, ELM can be employed for 

fault location estimation in PV arrays. 

 By utilizing measurements from multiple sensors or 

monitoring points within the PV system, an ELM-based model 

can estimate the location of a fault occurrence, facilitating 

targeted maintenance and repair actions [16-17]. 

 Since, the application of ELM in PV fault detection offers 

several advantages, including fast training times, low 

computational requirements, and good generalization 

performance. Many ELM simulation results on artificial and 

real applications have rigorously proved that ELM can 

produce good generalization performance, most of these 

applications are on image object detection [18–20], time series 

analysis [21–24], fault detection [25, 26], and remote sensing 

[27], etc. These characteristics and various applications make 

ELM suitable for real-time fault detection applications in 

large-scale PV systems. As a result, the goal of this work is to 

investigate efficient ELM approach to detect the grid 

connected PV system. 

3. ELM Theory and Feature Mapping 

According to ELM theory [13], any nonlinear piecewise 

continuous activation function G(w,b,x) may be utilized for 

feature mapping to approximate any continuous target 

function, as seen in Figure1. Sigmoid, tangential, Gaussian, 

and other functions are examples of these functions. The 

output function of the hidden layer for N input and L hidden 

nodes is as follows: 

  

 

Figure 1: ELM/Single Hidden Layer Feedforward 

Network Architect. 

h(x)= [G(w1,b1,x1 ),…,G(wL,bL,xL )]                                    (1) 

SLFNs have the following output function:     

ti= ∑ ± β,G(wi,bi,xj)
L
i=1                                                         (2) 

 j=1,…,N 

ELM may be extended to generalize SLFN using a wide 

range of feature mapping functions on the hidden layer with a 

sufficient number of L hidden nodes, as shown in equation 3: 

∥ 𝑓𝑡(𝑥) − 𝑓(𝑥) ∥< 𝜀                                                          (3)                                                       

Where 𝜀 is the error tolerance value which must be as 

small as possible. 

Consider a data set containing N - training samples  

(𝑥𝑖 , 𝑡𝑗) ∈ 𝑅n × 𝑅𝑚, j=1, 2,…,N with n = number of input 

attributes, m = number of output classes, and  G(x) = activation 

function, the estimated output 𝑦i = �̂�𝑖  is mathematically 

characterized as: 

fL(x)=y
i
=t̂j=∑

i=1

L
 β

i
⋅G(wixj+bi)=tj-ϵj=h(x)⋅β                              (4) 

         Minimizing the relative error between �̂�𝑖  and ti is the 

ELM goal, i.e., min∑
j=1

t
 ||tj-t̂j||, 

Where β is the output weight vector connecting the ith 

hidden nodes and the output nodes. 

 wi is the input weight vector that was arbitrarily selected 

to link the ith hidden node to the input nodes of the ith hidden 

node. 

bi is the randomly selected bias of the ith hidden nodes;  xj 

the input attributes;  yj the actual output. 

In matrix form, equation 2 is equivalent to: 

𝐻 ⋅ 𝛽 = 𝑇 →  𝑚𝑖𝑛𝛽 ∥ 𝐻 ⋅ 𝛽 − 𝑇 ∥ , where  ∥⋅∥   stands for 

the norm in Euclidean distance, then   𝛽 = 𝐻†𝑇  where 
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𝐻† = (𝐻⊤𝐻)−1𝐻⊤   is Moore-Penrose generalized pseudo 

inverse of hidden layer output matrix  . 
Equation 5 may be used to represent the desired output 

weights and objectives. 

   
  𝛽 = H†T = (HTH)−1HTT&T̂ = H𝛽 = H(HTH +

𝜆I)−1HTT = HAT. T                                                          (5) 

𝐻 (𝑤1,· ·, 𝑤𝐿;  𝑏1,· · , 𝑏𝐿; 𝑥1 ,· ·, 𝑥𝑁)                                     (6)   

= [

𝐺(𝑤1,  𝑏1, 𝑥1) · · · 𝐺(𝑤𝐿, 𝑏𝐿 , 𝑥1)
⋮ · · · ⋮

𝐺(𝑤1,  𝑏1, 𝑥𝑁) · · ·  𝐺(𝑤𝐿 , 𝑏𝐿 , 𝑥𝑁)
] 

where,   

β= [

β
1

1

⋮

β
L

T
]

L×m

 &T= [
t1
1

⋮
tN
T

]

N×m

,Tij=                                    (7)

{
1 for vectors of class  i=j

0 for vectors of class i≠j

             

       The ith column of 𝑇 is the output target of the ith hidden 

nodes with respect to inputs 𝑥1 ,· · · , 𝑥𝑁 . As a result, the 

ELM algorithm is a learning approach formed by two 

processes. The first is the mapping process that converts 

the input space 𝑅𝑛 or reduced input space 𝑅𝑑  to a usually 

high-dimensional feature space 𝑅𝐿  (noted as ELM 

space) with preserving some training data properties, i.e, 

(𝑋 ∈ 𝑅𝑁×𝑛  or 𝑋 ∈ 𝑅𝑁×𝑑 ⇨ 𝐻 ∈ 𝑅𝑁×𝐿). The second is 

the optimization scheme process that projects high-

dimensional feature space 𝑅𝐿  to a low projection linear 

space 𝑅𝑚, i.e, (𝐻 ∈ 𝑅𝑁×𝐿 ⇨ 𝑇 ∈ 𝑅𝑁×𝑚). 

The following steps describe the typical ELM approach 

for classification purpose: 

ELM Algorithm 

Given a training set containing of N-samples as ℵ =

 { ( 𝑥𝑖  ,  𝑡𝑖  ) | 𝑥𝑖  ∈  𝑅𝑛  ,  𝑡𝑖  ∈  𝑅𝑚  , 𝑖 =  1 ,· · · , 𝑁 }, 

activation function G(x), and hidden nodes number L; 

1. Assign randomly input weight vectors 𝑤𝑖 and 

hidden nodes bias 𝑏𝑖, 𝑖 =  1 ,· · · , 𝐿. 

2. Using equation 6, calculate the hidden layer output 

matrix 𝐻 (𝑤1,· · · ,  𝑤𝐿,  𝑏1, · · · , 𝑏𝐿 , 𝑥1,· · · , 𝑥𝑁).  

3. Calculate the output weight 𝛽 as: 𝛽 = 𝐻† 𝑇, where 

𝐻† = (𝐻𝑇𝐻 )−1𝐻𝑇 or 𝐻† = 𝐻(𝐻𝑇𝐻 + 𝜆𝐼)−1𝐻𝑇𝑇 

is the Moore-Penrose generalized inverse of hidden 

layer output matrix H, and 𝜆 is a suitable 

regularization parameter value. 

According to the perspective of evaluation the 

samples are divided into the training and the testing 

sets. The training sets are used firstly for getting the 

value of the output weight (β), then  

4. Employing the pre-calculated β in step 3 to 

approximate or classify the test patterns using the 

following equation 𝑦𝑡𝑒𝑠𝑡 = ℎ(𝑥). 𝛽 = 𝐻𝑡𝑒𝑠𝑡𝛽 for 

regression, then apply 𝐿𝑡𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑟𝑜𝑤 (𝑦𝑡𝑒𝑠𝑡) for 

classification, the 𝑎𝑟𝑔 function returns the index of 

the maximum value for each row of 𝑦𝑡𝑒𝑠𝑡. Where, 

𝐿𝑡𝑒𝑠𝑡(𝑚 ×  1) is the output label of 𝑚 testing 

instances.  

  

4. PV System Model 

    Figure 2 gives the principle of grid-tied photovoltaic 

power generation (PVPGs).  

 

Fig. 2. Structure diagram of grid-tied photovoltaic power 

generation. 

A grid-connected PV system, as illustrated in Figure 3, is 

a system that generates electricity using solar panels and is 

connected to the power grid. It operates in conjunction with 

the grid and can feed excess electricity back into the grid when 

it generates more power than the connected load requires [28]. 

The primary components of a grid-connected PV system 

include PV modules, an inverter, and the grid connection. In 

photovoltaic modules (PV), solar cells are used to convert 

sunlight into energy. The inverter is essential because it 

transforms the DC power produced by the PV modules into 

grid-friendly AC power. 

 The system's ability to interchange energy with the power 

grid is made possible by the grid connection. Any of these 

parts might fail, decreasing the PV system's efficiency and 

shortening its lifespan. In order to keep the system running 

smoothly and error-free, it is crucial that it be regularly 

inspected and maintained.  

The suggested microgrid structure as seen in Figure 3 

includes a photovoltaic (PV) system linked to the DC 

connection through a unidirectional boost converter. In 

addition to the LC filter, the Point of Common Coupling 

(PCC) variable load, and the inverter linking the PCC to the 

main load make up the rest of the system.  

The PV system uses sun power SPR-400E model panels, 

each of which has a capacity of 400 W and 90 cells, and is 

comprised of 12 panels linked in series and 52 panels 

connected in parallel. The plant has a total output of 250 kW 

of electricity. 

The suggested microgrid structure includes a photovoltaic 

(PV) system linked to the DC connection through a 

unidirectional boost converter. In addition to the LC filter, the 

PCC variable load, and the inverter linking the PCC to the 
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main load make up the rest of the system. The PV system uses 

SunPower SPR-400E model panels, each of which has a 

capacity of 400 W and 90 cells, and is comprised of 12 panels 

linked in series and 52 panels connected in parallel. The plant 

has a total output of 250 kW of electricity. Tables 1 includes 

a listing of the characteristics and measurements of the PV 

panels that were used for this study. All simulation 

investigations were carried out with the help of the MATLAB 

program.   

Table 1 provides the technical specifications of the 

proposed PV system, including open circuit voltage (𝑉𝑂𝐶), 

short circuit current (𝐼𝑆𝐶), current at the maximum power point 

(𝐼𝑚𝑝𝑝), voltage at the maximum power point (𝑉𝑚𝑝𝑝), and the 

number of series panels (𝑁𝑠) and parallel panels (𝑁𝑝) used in 

the configuration. The total power of the solar power plant is 

stated as 250 kW.  

Table 2 presents the determined parameters of the 

suggested system, such as rated power, grid line voltage, DC 

voltage, grid frequency, switching frequency, and various 

component specifications such as boost capacitor, boost 

inductance, DC-link capacitor, filter capacitor, and bi-

directional inductance. 

The production of electricity by the solar power plant 

ranges from 200 kW to 250 kW to meet the demand load, and 

MATLAB was used for all simulation investigations. 

 

Table 1. The proposed PV system technical specifications 

Symbol Description Value 

Voc Open circuit Voltage 85.3V 

ISC Short circuit current 5.87A 

Impp Current at maximum power point 5.49A 

Vmpp Voltage at maximum power point 72.9V 

MPP Max Power point 400W 

Ns Number of series panels 12 

Np Number of parallel panels 52 

Ptotal Total power of solar power plant 250KW 

 

5. Dataset Preparation 

To create training and testing datasets for PV defect 

scenarios, a simulated 250kW PV power system was created. 

The system was designed to replicate normal operation 

without any faults (referred to as F0). Additionally, three 

distinct types of faults were introduced, as illustrated in Figure  

4. These faults include string-to-string faults (F1), on-string 

faults (F2), and string-to-ground faults (F3). Each fault 

category represents a predefined set of specific fault 

conditions within the PV system. The training and testing 

datasets were built on the DC side of the PV system, including 

both normal operation and different forms of PV failures. The 

following are the individual instances contained in the 

datasets: 

➢ Fault-free (F0): This scenario illustrates the PV 

system operating normally with no defects or irregularities. 

All components are operating at peak efficiency, resulting in 

the projected power output. 

➢ String-to-string fault (F1): This problem arises when 

the wiring between two strings of PV modules fails. It may be 

caused by defective connectors, loose connections, or broken 

wiring. As a result, the afflicted string's power output may be 

diminished or possibly lost entirely. 

➢ On-string fault (F2): An on-string fault is defined as 

a malfunction in one or more PV modules inside a string. This 

might be due to a faulty module, a faulty bypass diode, or 

shading difficulties. The afflicted module(s) may 

produce much less or no power at all, affecting the 

string's overall performance. 

➢  String-to-ground fault (F3): This problem occurs 

when the wiring connecting a string of PV modules to the 

ground fails. It can be caused by a broken grounding wire or 

an inadequate grounding electrode. In addition to potential 

safety concerns, such a fault can result in limited or no power 

production from the affected string. These represent some of 

the possible PV defects that can occur, and they can have a 

significant impact on the efficiency and performance of a PV 

system. 

The dataset consists of 701 instances, each with 26 

features and one column for the fault classes; training data 

consists of 603×27, while testing data consists of the 

remaining 98×27. The simulations will account for most of the 

I-V characteristics curve of the PV array under varying 

environmental conditions. 

 The distribution of PV simulation datasets with all failure 

types is shown in Table 3. The dataset used for defect 

identification includes various electrical features such as 

minimum, maximum, average, and range values of currents, 

voltages, and powers.  

Additionally, environmental features such as temperature 

and irradiation are included. The temperature (T) ranges from 

5°C to 45°C with a resolution of 5°C, while light irradiation 

(G) ranges from 50 W/m2 to 1000 W/m2 with a step size of 50 

W/m2. To evaluate the accuracy of the suggested models in 

defect identification, a 10-fold cross-validation approach is 

employed [29-34]. The distribution of the PV simulation 

datasets, including all types of failures, is presented in Table 

3. 

 Table 2. The functional parameters of the microgrid PV 

system. 

Parameters 

Rated power 

Grid line voltage 

DC-Voltage 

Grid frequency 

Switching 

frequency 

Value Parameters Value 

200kW Boost capacitor 3mF 

400V Boost inductance 0.8mH 

800 V DC-link capacitor 5mF 

50 Hz Filter capacitor 40µF 

10kHz Bi-directional 

inductance 

0.3mH 
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Fig.3. The grid PV system block diagram. 

 

Fig. 4. Three different faults in M×N PV array. 

Table 3. The PV simulation dataset distribution with various 

fault types. 

Fault Type 

Fault free 

string-to-string fault 

on-string fault 

string-to-ground 

Nominal or 

class 

size 

F0 133×27 

F1 172×27 

F2 174×27 

F3 222×27 

Total data=701×27, training part=603×27, testing 

part=98×27 

 

6. Data Preprocessing 

Many cells of our dataset are missing, needing to use 

imputation technique to estimate and fill these missing values 

in the dataset. One common approach is using the k-nearest 

neighbors (KNN) algorithm for imputation. In KNN 

imputation, the missing values are replaced with estimated 

values based on the values of their nearest neighbors. To 

perform missing imputation using KNN, the following steps 

are typically followed [35]: 

➢ Identify the features with missing values in the 

dataset. 

➢ For each instance with missing values, find the k-

nearest neighbors based on the available features. The choice 

of k depends on the dataset and can be determined through 

experimentation or domain knowledge. 

➢  Calculate a distance metric (e.g., Euclidean distance) 

between the instance with missing values and its k nearest 

neighbors. 

➢ Weight the values of the nearest neighbors based on 

their distances. Typically, the closer neighbors have higher 

weights. 

➢ Calculate the imputed value by taking the weighted 

average or majority vote of the values from the k nearest 

neighbors. 

➢ Replace the missing values in the dataset with the 

imputed values. In the context of ELM, normalization serves 

multiple purposes.  

Firstly, it helps to avoid features with larger values 

dominating the learning process, ensuring that all features are 

treated equally. Secondly, it prevents numerical instability and 

improves the convergence of the ELM algorithm by scaling 

the input data. Finally, normalization enhances the 

interpretability of the model and reduces the influence of 

outliers or extreme values [36]. 

By applying min-max normalization to the input data in 

ELM, the features are brought to a consistent scale between 0 

and 1, enabling fair comparisons and effective analysis. This 

normalization step contributes to the overall performance and 

stability of the ELM model. 

7. Experiential Results 

       The all proposed models of the PV systems and all 

machine learning approaches were designed using 

MATLAB software environment version 2021b. The 

training and testing confusion resultant matrices obtained 

from the four models (LDA, SVM, ANN, and ELM) are 

detailed in Figures (5-8), Table 4 explains the 

performance metrics including training accuracy, training 

time, and testing accuracy. The hyper-parameter 

assumptions for the ELM classifier are: the first layer is 

of size 10, hidden layer is of size L=100 or L=200 with 

sigmoid activation function, and the output layer is of size 
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4. While the ANN hyper-parameter with the first layer is 

of size 25, first hidden layer is of size 40, second hidden 

layer is of size 20 with sigmoid activation functions, and 

the output layer is of size 4, and the iteration limit with 

1000 epochs. 

 

Training confusion matrix 

 
                 Testing confusion matrix 

       Fig. 5. Confusion matrix for the LDA classifier. 

 
                                 Training confusion matrix 

 

                Testing confusion matrix 

      Fig. 6: Confusion matrix for the SVM classifier 

 

                Training confusion matrix 

 

                 Testing confusion matrix 

Fig. 7. Confusion matrix for the ANN classifier 
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Training confusion matrix 

 

Testing confusion matrix 

Fig. 8. Confusion matrix for the ELM (L=100) 

classifier 

Table 4 shows each model's accuracy without any feature 

selection on the validation and test sets, as well as the training 

time for each model. 

Table 4. All classifiers performances 

Session: Classification normalization  without Feature 

Selection 

Training Data: x    Observations: 603 
  

Predictors: 26     

Response Name: column 27    Response Classes: 4    

Response Class Names: 0, 1, 2, 3 

Validation: 10-fold cross validation 
  

Test Data: x    

Observations: 98 

   

Model 

No. 

Model 

Type 

Accuracy % 

(Validation) 

Accur

acy % 

(Test) 

Train

ing 

Time 

(sec) 

1 
ELM 

(L=100) 
98.3416 

97.959

2 

0.106

3 

1 
ELM 

(L=200) 
99.1663 

97.972

7 

0.170

9 

2 LDA 94.0298 
90.816

3 

4.985

4 

3 SVM 97.0149 
96.459

1 

3.887

1 

4 
Neural 

Network 
95.5224 

94.938

8 

2.306

3 

 

The training and testing accuracies are illustrated as in 

Figure 9, while the training time is as shown in Figure 10. The 

classification results indicate the performance of various 

models on a dataset consisting of 603 observations and 26 

predictors, with the goal of predicting a response variable with 

four classes. The ELM models showed exceptional accuracy, 

with the ELM (L=200) model achieving a perfect accuracy of 

99.1663% on the validation data and 97.9727% on the test 

data, trained in 0.1709 seconds. The LDA, SVM, and neural 

network models also demonstrated good accuracies, although 

slightly lower than the ELM models. Notably, the LDA model 

had the longest training time at 4.9854 seconds, while the 

ELM models trained the fastest.  

 

Fig. 9. The training and testing accuracies of all proposed 

classifiers without any feature selections. 

 

Fig. 10. The training time of all proposed classifiers 

without any feature selections. 

85

90

95

100

ELM
(L=100)

ELM
(L=200)

LDA SVM Neural
Network

Classification without feature selection

Accuracy % (Validation) Accuracy % (Test)
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Fig.11. The training and testing accuracies of all   proposed 

classifiers with 20 feature selections. 

When performing feature selection using the Analysis of 

Variance (ANOVA) [37] methodology as an example to 

choose the top 20 features for lowering the dimensionality 

from 26 features to 20 or 10 features, the accuracy of a 

classifier method might fluctuate depending on the dataset and 

context. Table 5 and Figures 11&12 show each model's 

accuracy with feature selection with 20 features on the 

validation and test sets, as well as the training time for each 

model. 

 

Fig. 12. The training time of all proposed classifiers with 

20 feature selections. 

Table 5. All classifiers’ performances with feature 

selection of 20 features. 

Session: Classification_normalization with 

ANOVA (20  features) 

  

Training Data: x    Observations: 

603 

    

Predictors: 20     

Response Name: Column 21   Response Classes: 4    

Response Class Names: 0, 1, 2, 3 

Validation: 10-fold cross-

validation 

    

Test Data: x    

Observations: 98 

     

Model 

No. 

Model 

Type 

Accuracy % 

(Validation) 

Accuracy 

% (Test) 

Trainin

g Time 

(sec) 

1 ELM 

(L=100) 

96.7538 96.2791 0.3285 

1 ELM 

(L=200) 

97.0803 97.0206 0.5832 

2 LDA 91.0447 90.2775 3.6017 

3 SVM 94.1907 94.0081 7.0069 

4 Neural 

Networ

k 

93.5441 92.8751 9.9881 

 

The findings reveal that various categorization models 

have varied accuracies and training timeframes. The ELM 

models (with 100 and 200 hidden nodes) maintained excellent 

accuracy, with the ELM (L=200) model reaching near-perfect 

validation accuracy of 97.0803% and test data accuracy of 

97.0206%. However, when compared to the prior findings, the 

accuracy of the LDA model was lower. The accuracy of the 

SVM and neural network models ranged from moderate to 

high, with the neural network taking the most training time. 

These results emphasize the necessity of addressing dataset-

specific criteria while choosing and assessing features, as well 

as the influence of feature selection on classifier performance. 

Table 6 and Figures 13&14 show each model's accuracy with 

feature selection with 10 features on the validation and test 

sets, as well as the training time for each model. 

Table 6. All classifiers performances with feature selection 

of 10 features. 

Session: Classification normalization with 

ANOVA (10  features) 

  

Training Data: x    

Observations: 603 

    

Predictors: 10     

Response Name: column_21   Response Classes: 4    

Response Class Names: 0, 1, 2, 3 

Validation: 10-fold cross-

validation 

    

Test Data: x    

Observations: 

98 

     

Mode

l No. 

 Model 

Type 

Accuracy % 

(Validation) 

Accuracy 

% (Test) 

Training 

Time (sec) 

1 ELM 

(L=100) 

92.1483 92.1154 0.5644 

1 ELM 

(L=200) 

93.6504 93.2432 0.7390 

2 LDA 50  49.5854 3.4078 

85

90

95

100

ELM
(L=100)

ELM
(L=200)

LDA SVM Neural
Network

Classification with feature selections (20 )

Accuracy % (Validation) Accuracy % (Test)
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3 SVM 72.1393 70.5306 18.548 

4 Neural 

Networ

k 

91.6981 90.8979 20.937 

 

 

Fig. 13. The training and testing accuracies of all 

proposed classifiers with 10 feature selections. 

        In this amended analysis, the number of predictors 

was reduced from 26 to 10 by feature selection using 

ANOVA. The results indicate that classification models 

have varying degrees of precision and training periods. 

 

Fig 14. The training time of all proposed classifiers with 10 

feature selections. 

The ELM models with 100 and 200 concealed nodes 

demonstrated relatively high accuracies, with the ELM 

(L=200) model achieving validation and test accuracies of 

93.654% and 93.2434%, respectively. However, the LDA 

model's accuracy decreased significantly compared to the 

previous results. The SVM and neural network models 

exhibited moderate to high levels of accuracy, with the neural 

network requiring more time to train. These results underscore 

the impact of feature selection on classifier performance and 

emphasize the need to take dataset-specific factors into 

account when selecting and evaluating features. 

The accuracy percentages indicate the efficacy of the 

models on training and assessment datasets, with ELM models 

attaining high accuracy on average. However, after feature 

selection, the accuracy of the majority of models decreases. 

Training durations for all models are brief. These results 

underscore the importance of feature selection and the need 

for additional analysis and optimization to improve the 

performance of the models. 

8. Conclusion  

This study contributes to the field of fault detection in 

grid-connected photovoltaic systems by examining the 

efficacy of Extreme Learning Machines (ELM) as a fault 

detection technique. The results emphasize the significant 

benefits of ELM, such as its quick training periods, minimal 

computational requirements, and excellent generalization 

performance. ELM's application in identifying and classifying 

various categories of defects in PV systems, such as module 

degradation, shading, and connection problems, demonstrates 

its potential as a cost-effective and efficient method for 

prompt fault detection. 

Solar power plant operators can minimize the financial 

impact of failures and optimize system performance by 

promptly detecting and classifying defects. ELM's enhanced 

utility in large-scale PV systems is a result of its capacity to 

facilitate targeted maintenance and repair actions. By utilizing 

ELM, solar power plant operators are able to detect and 

resolve defects in real-time, thereby reducing operational 

expenses and ensuring the system's seamless operation. The 

findings of this study highlight the importance of machine 

learning approaches, such as ELM, for increasing fault 

detection and operational efficacy in renewable energy 

systems. Future research can investigate the application of 

ELM in conjunction with other defect detection techniques to 

further improve its performance and its scalability in larger PV 

systems. Overall, the use of ELM as a defect detection method 

offers promising prospects for the dependable and cost-

effective operation of photovoltaic systems that are grid-

connected. Future research directions in the field of defect 

detection in grid-connected photovoltaic (PV) systems may 

include the following: Integration of Multiple Defect 

Detection Methods: Investigate integrating ELM with other 

defect detection methods to enhance precision and reliability.  

In order to enhance the efficacy of the defect detection 

system, it is important to explore sophisticated feature 

selection approaches such as genetic algorithms and particle 

swarm optimization. It is important to assess the efficacy of 

ELM-based fault detection in the context of bigger solar 

systems. Furthermore, it is advisable to include real-time 

monitoring and adaptive learning capabilities in order to 

improve responsiveness and flexibility [38]. Finally, it is 

important to confirm the effectiveness of the system by 

subjecting it to rigorous testing using varied data sets across a 

range of operational situations like involving PID controller 

with adaptive algorithms [39], or fractional order PI [40], or 

adopting fast fuzzy-neural systems [41], etc. 
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