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Abstract- This research proposes a vehicle-to-grid strategy based on dynamic optimization for a fleet of public transportation 

Electric Vehicles (EVs) whose charging station is jointly powered by the conventional electrical network and photovoltaic 

renewable sources. Utilizing two neural networks, the proposed algorithm predicted future energy expenditure of Electric 

Vehicles (EVs) and the power generation potential of the renewable sources. The goal was to optimize dynamically the EVs' 

decision-making, encompassing their charging-discharging schedules, power exchange with the electrical network, and travel 

dispatch. The analysis considered the EVs' capacity for selling energy and providing frequency reserve ancillary services. 

Consequently, this proposal enables the estimation of fleet management plans by considering the daily average congestion level 

in the analysis zone, the required departure schedules of the vehicles in the fleet, and the past measures of solar radiation at the 

site. These variables serve as inputs for the prediction algorithms. The mathematical model of dynamic optimization was 

formulated as a convex Mixed-Integer problem and was solved using the iterative branch and cut method. The findings revealed 

that the most profitable options for the EVs' owners include selling energy and providing downward regulation ancillary services. 

Moreover, as the solution's viability relied on the accuracy of the prediction algorithms' outputs, two high precision neural 

networks, with an error rate lower than 2%, have been employed. 

Keywords: Artificial Intelligence, Electric Vehicles, Neural Networks, Optimization methods, Renewable Energy Sources, 

Vehicle-to-Grid. 

1. Introduction 

Currently, the research on electric vehicles contributing 

storage-based ancillary services to the electrical network has 

gained significant relevance. EV batteries, utilized during 

parking periods, offer opportunities to provide frequency 

regulation, voltage support, or to smooth intermittencies of 

renewable sources, among other services [1]. As power 

systems with a high penetration of distributed highly variant 

sources and EVs suffer of huge effects in the electricity 

network operation [2], [3]. Hence, it is indispensable to have 

management strategies that coordinate the transport services 

with ancillary services supplying [4]–[6]. In this regard, the 

current research proposes an optimization and artificial 

intelligence-based management strategy applicable to public 

transport EVs fleets. It is motivated in the fact that the 

replacement of conventional (fuel based) vehicles for public 

transport by EVs, is a practice that has been increasing around 

the world, as it can avoid the production of CO2 derived from 

the fossil fuels usage. 

Furthermore, the proposed strategy extend the approaches 

presented in the previous researches [7], [8] which are based 
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on the EVs batteries aggregation approach, and the works 

presented in [5], [9]–[13], by providing charging/discharging 

plans for individual EVs and also allocating specific travel 

assignments to each vehicle within the fleet. This 

comprehensive approach considers the EVs' capability to offer 

secondary frequency regulation reserves and engage in energy 

sales to the electrical network, while incorporating renewable 

energy sources at the charging stations.  In addition, it 

provides the management plans for individual EVs instead of 

for the whole aggregated fleet as in the references [7], [8]. 

Having also as a novelty, the addition of two estimation 

modules that provide the decision-making system inputs, 

which are intended to forecast the energy expenditure in 

travels and the renewable power generation, instead of using 

fixed energy expenditure profiles as in [14]. Particularly, the 

energy expenditure estimation module uses a backpropagation 

neural network whose architecture was inspired in the work 

[15], which takes as inputs the average daily congestion level 

in the traffic region and the starting hour of the required 

travels. This estimation algorithm eliminates the need for 

energy meters onboarding of EVs and relates energy 

consumption to variables commonly available for operators of 

public transport fleets. And, specifically, it poses an advantage 

regarding the method set in work [15], since it allows the fleet 

operator to make its decisions based on the congestion 

expected for a specific day. Being the congestion a critical 

issue for the study case traffic network, located at Medellín 

Colombia, as it is indicated in [16]. 

Furthermore, the renewable generation forecasting 

module uses a Long short-term memory neural network, 

which is able to capture dependencies in time of the input 

variables and is used to predict highly variant time series [17], 

[18]. 

Therefore, in the proposed strategy both prediction 

modules are set together with the decision-maker that takes as 

inputs the forecasted variables and executes a convex Mixed-

Integer Dynamic (MID) optimization to find the most 

economically profitable decisions for each EV in the fleet; 

where the cost function of the decision-maker is composed by 

the daily cash flow for the EVs owners, generated by the 

energy purchases, sales, ancillary services provision 

payments, and the batteries wear cost. The mathematical 

approach of this procedure is described in Section 2. Sections 

3 and 4 detail the algorithms of the estimation modules. 

Finally, Section 5 describes the study case and the results 

found with the solution of the optimization problem, which is 

carried out using the iterative method branch and cut. 

2. EVs Management Proposal 

The EVs management strategy proposed was applied to 

control the charging/discharging processes of the EVs fleet 

and schedule their travels. It is based on dynamic Mixed-

Integer convex optimization executed online for each time 

step k, with a daily horizon. The traffic system under 

consideration is a public EVs system, with a single charging 

station and composed of electric buses. In this system, the 

vehicles parked at the charging station can sell energy and 

provide upward and downward frequency regulation services 

to the electrical power network. 

More precisely, the upward regulation, denoted as 𝑷𝒅,𝒓𝒖 

was associated with the cases in which the Transmission 

System Operator - TSO (in charge of managing the activation 

of the frequency regulation ancillary services) requires that 

EVs deliver more discharging power than those they have 

scheduled for selling to the electrical network. 

Similarly, the downward regulation, denoted as 𝑷𝒄,𝒓𝒅, was 

linked to the situations in which the TSO requires that the EVs 

decrease their charging power. Moreover, the proposed 

dynamic optimization strategy takes as input data the 

estimated initial state of charge of EVs, the estimated energy 

expenditure during travels, and the estimated energy 

generated by renewable sources located at the charging 

stations. We detail the procedure to obtain the last two 

estimated inputs in section 3 and 4, which relies on AI 

algorithms. Furthermore, the proposed strategy gives as 

output, the charging/discharging plans for each EV in the fleet, 

and the assignment of each required travel to a specific EV in 

the fleet, maximizing the EVs aggregator incomes and 

minimizing its operative costs. 

A schematic view of the proposed strategy is show in Fig. 

1 and hence, the dynamic model for the energy content of the 

EVs batteries, indicated in Eq. (1), is used to obtain the 

optimization policy that will govern the block 

“charging/discharging and travel scheduling strategy”. 

  𝐸𝑗(𝑘 + 1) = (1 − 𝜎𝑏)𝐸𝑗(𝑘) + 𝑃𝑐
𝑗(𝑘) − 𝑃𝑑

𝑗(𝑘)        (1) 

And, considering a maximum capacity 
ME  for the EVs 

batteries, the state of charge of the batteries can be estimated 

with the expression of Eq. (2). 

                             𝑆𝑂𝐶𝑗(𝑘) =
𝐸𝑗(𝑘)

𝐸𝑀          (2) 

 

 

Figure 1. Scheme of the proposed fleet management 

strategy for the aggregator. 

where the element 𝑃𝑑
𝑗(𝑘) corresponds to the discharging 

power of the j-th battery at the k-th time step. 

The variable 𝑷𝒅  is divided into three new variables: 

𝑷𝒅,𝒈, 𝑷𝒅,𝒕, 𝑷𝒅,𝒓𝒖 as the discharging power can be due to the 

vehicle traveling 𝑷𝒅,𝒕, to a power exchanging with the electric 

network 𝑷𝒅,𝒈 , or to the provision of the upward regulation 

service 𝑷𝒅,𝒓𝒖 . Hence the variable 𝑷𝒅  will be calculated as 

indicates Eq. (3). 
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                      𝑷𝒅 = 𝑷𝒅,𝒈 + 𝑷𝒅,𝒕 + 𝑷𝒅,𝒓𝒖                      (3) 

In a similar way, the variable 𝑷𝒄 is obtained as the sum of 

the three new variables 𝑷𝒄,𝒈, 𝑷𝒄,𝒓𝒅, 𝑷𝒄,𝒓𝒏 which represent the 

power purchased from the electrical network, the downward 

regulation service scheduled, and the power generated by the 

renewable sources, respectively. Therefore, the variable 𝑷𝒄 is 

obtained with (4). 

                    𝑷𝒄 = 𝑷𝒄,𝒈 + 𝑷𝒄,𝒓𝒅 + 𝑷𝒄,𝒓𝒏                       (4) 

On the other hand, the cost function 𝑓(⋅) for the proposed 

optimization strategy is set in Eq. (5). It corresponds to the 

daily cash flow for the EVs aggregator, which includes the 

purchase energy costs, the revenues from energy sales, the 

revenues from downward and upward regulation ancillary 

services provision, and the batteries wear cost. 

 

𝒇(𝑷𝒄,𝒈 , 𝑷𝒄,𝒓𝒅, 𝑷𝒅,𝒈, 𝑷𝒅,𝒓𝒖, 𝑺𝑶𝑪) = 𝑪𝒄 ∑ 𝑷𝒄
𝒋𝒗

𝒋=𝟏 − 𝑹𝒅 ∑ 𝑷𝒅
𝒋𝒗

𝒋=𝟏

−𝑹𝒓𝒅 ∑ 𝑷𝒄,𝒓𝒅
𝒋𝒗

𝒋=𝟏 − 𝑹𝒓𝒖 ∑ 𝑷𝒅,𝒓𝒖
𝒋𝒗

𝒋=𝟏 + ∑ 𝒘𝒗
𝒋=𝟏 (𝑺𝑶𝑪𝒋)

     (5) 

 

where 𝑣 is the amount of EVs in the fleet, and 𝑤(⋅) is the 

batteries wear function, which is convex. A detailed 

description of this function is given in reference [7]. 

Note that the renewable generation is not included in the 

cost function of Eq. (5), since it is considered, the renewable 

sources are already installed at the charging station. Hence, 

their installation costs are omitted, and their operative costs 

are assumed to be zero. Thus, the system will be intended to 

use as much renewable energy as possible, because these 

sources will be free of charge. 

Outlining, the complete dynamic optimization approach 

used in the block “charging/discharging and travel scheduling 

strategy” of Fig. 1, is described by Eq. (6) and subsequent Eqs. 

(6a) – (6k). 

𝒎𝒊𝒏 𝑷𝒄,𝒈 ,𝑷𝒄,𝒓𝒅, 𝑷𝒅,𝒓𝒏 𝑷𝒅,𝒈 ,𝑷𝒅,𝒓𝒖,𝑷𝒅,𝒕, A𝒗, A𝒄
   𝒇(𝑷𝒄,𝒈, 𝑷𝒄,𝒓𝒅, 

𝑷𝒅,𝒈, 𝑷𝒅,𝒓𝒖, 𝑺𝑶𝑪)                                                                (6a) 

Subject to 

               

𝟏 ⋅ 𝑆𝑂𝐶𝑚 ≤ 𝑺𝑶𝑪𝒋 ≤ 𝟏,    

𝟏 ⋅ 𝐸𝑀 ⋅ 𝑆𝑂𝐶𝑚 ≤ 𝑬𝒓𝒅
𝒋

≤ 𝟏 ⋅ 𝐸𝑀 ,    

𝟏 ⋅ 𝐸𝑀 ⋅ 𝑆𝑂𝐶𝑚 ≤ 𝑬𝒓𝒖
𝒋

≤ 𝟏 ⋅ 𝐸𝑀 ,    

𝟏 ⋅ 𝐸𝑀 ⋅ 𝑆𝑂𝐶𝑚 ≤ 𝑬𝒓𝒖,𝒓𝒅
𝒋

≤ 𝟏 ⋅ 𝐸𝑀 ,

                (6b) 

                  ∑ (𝑷𝒄,𝒈
𝑗 + 𝑷𝒄,𝒓𝒅

𝑗 ) ≤ 𝟏 ⋅ 𝑃𝑙
𝑀𝑣

𝑗=1 ,                    (6c) 

                    ∑ (𝑷𝒅,𝒈
𝑗 + 𝑷𝒅,𝒓𝒖

𝑗 ) ≤ 𝟏 ⋅ 𝑃𝑙
𝑀𝑣

𝑗=1 ,                    (6d) 

                   𝑷𝒄,𝒈
𝒋

+ 𝑷𝒄,𝒓𝒅
𝒋

+ 𝑷𝒄,𝒓𝒏
𝒋

≤ 𝑷𝑴 ⋅ 𝑨𝒄
𝒋
,                (6e) 

    𝑷𝒅,𝒈
𝒋

+ 𝑷𝒅,𝒓𝒖
𝒋

≤ 𝟏 ⋅ 𝑷𝑴 ⋅ (𝟏 − 𝑨𝒄
𝒋

− 𝒖𝒋),   ∀𝑗 ∈ 𝑉    (6f) 

                                    ∑ 𝑨𝒗(𝒊) = 𝟏𝑟
𝑖=1                           (6g) 

where 𝑉 = {1, ⋯ , 𝑣}  is a set containing the indexes of 

each EV in the fleet, and 𝑁 = {1, ⋯ , 𝑛} is a set containing the 

indexes of the time discretization slots in the prediction 

horizon. 

The decision variables of the dynamic optimization 

problem of Eq. (6) are the matrices 𝑷𝒄,𝒈 ∈ ℝ𝑛×𝑣  which depicts 

the charging amount of each EV in the fleet at each time step, 

𝑷𝒄,𝒓𝒅 ∈ ℝ𝑛×𝑣  which contains the amount of downward 

reserve provided by each EV at each time step, 𝑷𝒄,𝒓𝒏 ∈ ℝ𝑛×𝑣 

that indicates the amount of renewable generation stored in 

each EV’s battery at each time step, 𝑷𝒅,𝒈 ∈ ℝ𝑛×𝑣 that contains 

the power sold to the electrical network by each EV in the fleet 

at each time step, 𝑷𝒅,𝒓𝒖 ∈ ℝ𝑛×𝑣  which contains the amount of 

upward reserve provided by each EV at each time step, 𝑷𝒅,𝒕 ∈
ℝ𝑛×𝑣  which contains the energy expended by each EV 

performing a travel at each time step, 𝑨𝒄 ∈ ℝ𝑛×𝑣 which is a 

binary matrix that indicates the charging periods for each EV 

(contains 1’s at time steps in which batteries are charging and 

0 otherwise), and 𝑨𝒗 ∈ ℝ𝑟×𝑣  which is a binary matrix that 

indicates the travels performed by each EV: an element (i,j) 

with value of 1 indicates that the i-th travel is performed by 

the j-th EV. The elements of those matrices are constrained to 

be positive.  

Moreover, the constraints (Eq. (6b)) are related with the 

energy limits in the EVs batteries, being 𝑆𝑂𝐶𝑚  their 

minimum allowed state of charge; and considering that the 

state of charge should lie inside the allowed limits with and 

without the provision of reserve the ancillary services. Since, 

independently whether the frequency reserves are effectively 

used or not, the EVs should have the capacity to supply the 

energy for required travels. Therefore, the constraints over 

new variables 𝑬𝒓𝒅 , 𝑬𝒓𝒖 , and 𝑬𝒓𝒖,𝒓𝒅  calculated with Eq. (7) 

and subsequent Eqs. (7a) – (7c), are included to guarantee 

these requirements. 

𝑬𝒓𝒅
𝒋 (𝒌 + 𝟏) = 𝑬𝒓𝒅

𝒋 (𝒌)(𝟏 − 𝝈𝒃) + 𝑷𝒄,𝒈
𝒋 (𝒌) + 𝑷𝒄,𝒓𝒏

𝒋 (𝒌) −

𝑷𝒅,𝒈
𝒋 (𝒌) − 𝑷𝒅,𝒕

𝒋 (𝒌) −

𝑷𝒅,𝒓𝒖
𝒋 (𝒌)                                                   (7a) 

 

   𝐸𝑟𝑢
𝑗 (𝑘 + 1) = 𝐸𝑟𝑢

𝑗 (𝑘)(1 − 𝜎𝑏) + 𝑃𝑐,𝑔
𝑗 (𝑘) + 𝑃𝑐,𝑟𝑛

𝑗 (𝑘) +

𝑃𝑐,𝑟𝑑
𝑗 (𝑘) − 𝑃𝑑,𝑔

𝑗 (𝑘) − 𝑃𝑑,𝑡
𝑗 (𝑘)                                              (7b) 

 

𝐸𝑟𝑢,𝑟𝑑
𝑗 (𝑘 + 1) = 𝐸𝑟𝑢,𝑟𝑑

𝑗 (𝑘)(1 − 𝜎𝑏) + 𝑃𝑐,𝑔
𝑗 (𝑘) +

𝑃𝑐,𝑟𝑛
𝑗 (𝑘) − 𝑃𝑑,𝑔

𝑗 (𝑘) − 𝑃𝑑,𝑡
𝑗 (𝑘)                                              (7c) 

Being 𝑬𝒓𝒅  the energy content in the batteries without 

considering the downward reserve, 𝑬𝒓𝒖 the energy content in 
the batteries without considering the upward reserve, and 

𝑬𝒓𝒖,𝒓𝒅 the energy content in the batteries without considering 

the downward and upward reserves. 

The constraint (Eq. (6c)) represents the limit over the total 

charging power of the EVs; which must be lower or equal to 

the rated power capacity of the distribution system lines 𝑃𝑙
𝑀. 

And in the same way, the constraint (Eq. (6d)) represents the 

limit over the total discharging power of the EVs. 
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The constraints of Eqs. (6e) – (6f) are intended to limit the 

amount of charging/discharging power of each EV according 

to the rated power capacity of the batteries 𝑃𝑀. Furthermore, 

we have multiplied this rated capacity by the matrix 𝑨𝒄 in the 

Eq. (6e), which constraints the vehicles to be charged only at 

time steps in which the binary matrix 𝑨𝒄  contains 1’s. 

Similarly, in Eq. (6.f) the discharging process of the vehicles 

is limited to the time intervals in which they are not being 

charged or driven to perform travels; such condition was 

implemented through the multiplication of the term 𝑃𝑀 by 

(𝟏 − 𝑨𝒄
𝒋
(𝑘) − 𝒖𝒋(𝑘)) ; where the binary matrix 𝒖 ∈ ℝ𝑛×𝑣 

(that contains 1’s at the time steps in which EVs performs a 

travel) is calculated with the Eq. (8). 

                         𝒖 = (𝑨𝒗 ⋅ 𝑨𝒕
𝑻)𝑻                                   (8) 

The matrices 𝒖 and 𝑨𝒄 are mutually excluding according 

to the constraint of Eq. (6i), that implies that vehicles cannot 

be charged while they are performing a travel. 

On the other hand, the constraints of Eqs. (6g) – (6h) are 

intended to assign the energy consumption of a travel for the 

vehicle selected to perform it. Particularly, this selection is 

carried out as Eq. (9) indicates, multiplying the matrix that 

contains all the estimated power consumption of travels at 

each time step 𝑭𝒕 by the selection matrix 𝑨𝒗, that assigns the 

power consumption of a travel to a specific EV in the fleet. 

Considering also that each travel needs to be performed by 

only one vehicle in the fleet. Such condition is reflected in Eq. 

(6g). 

                               𝑷𝒅,𝒕 = 𝑭𝒕 ⋅ 𝑨𝒗                                 (9) 

Finally, the constraint of Eq. (6j) established that the total 

renewable power used to charge the battery of each vehicle 

need to be equal to the renewable power generation 𝑷𝒓𝒏
𝑴 . 

3. Characterization of EVs Consumption Profiles 

As mentioned in the preceding section, the variable 

corresponding to the energy consumption profiles for each 

travel required is 𝑭𝒕 ∈ ℝ𝑛×𝑟 , which is an input of the 

optimization set in Eq. (6). This variable represents the 

integral of the power consumption in a travel during the time 

period [k-1,k].  

Consider the power consumption denoted as 𝑷𝒊𝒕 which is 

sampled with a frequency of 𝑧 ; therefore, the energy is 

obtained as the integral of the power between [k-1,k] with Eq. 

(10). 

𝐹𝑡(𝑘, 𝑥) = ∑ 𝑃𝑖𝑡(𝑧, 𝑥)𝑘+1
𝑧=𝑘 ,  for 𝑧 ≤ 𝑘,   for x ∈ 𝑅       (10) 

Hence, it is necessary to estimate the power consumption 

of EVs in the defined route, to compute. Here, this task was 

carried out using an Artificial Intelligence (IA) algorithm that 

predicts the power consumption of EVs for different departing 

times of the EVs and different daily average congestion 

regimes. This AI algorithm was trained with the data obtained 

from a traffic microsimulation of the study case public 

transport system under different traffic congestion conditions. 

The proposed neural network adopts a Backpropagation 

Network (BPN) architecture featuring one hidden layer 

housing 17 neurons, which is illustrated in Fig. 2. This 

architecture has been inspired by the approach proposed in 

reference [15], and the number of neurons in the hidden layer 

was determined in such a way the obtained Minimum Square 

Error (MSE) given by Eq. (11) was the minimum possible. 

 

𝑀𝑆𝐸 =
1

𝑁𝑠
∑ ∑ (𝑌𝑗(𝑘) − 𝑌�̂�(𝑘))

2𝑁𝑠
𝑘=1

4
𝑗=1        (11) 

Where 𝑌�̂�(𝑘) is the estimated value of the output variables 

calculated with the Neural Network. 

 

Figure 2. Backpropagation neural network architecture 

for the EVs energy consumption prediction. 

Where the input layer has a data set 𝑿 with 2 features: the 

starting hour of the travel and the congestion level; and 𝑁𝑠 =
4914  samples. And the output layer gives a dataset 𝒀 ∈
ℝ4×4914, for which, the 4 features correspond to the energy 

consumption at each time step, considering steps length of 5 

minutes and a maximum travel duration of 20 minutes. 

Moreover, the values 𝒃𝒊, 𝑾𝒊𝒋, 𝑽𝒊𝒋, 𝒅, and 𝜎 are the input 

bias factors, the input weight matrix, the output weight matrix, 

the output bias factor, and the sigmoidal activation function, 

respectively. 

Fig. 3 depicts the obtained results for the prediction of 

EVs energy consumption applying the backpropagation NN to 

the transport system of the study case, considering different 

traffic congestion cases (of 80% for high congestion, and 20% 

for low congestion). Here it can be observed that the high 

congestion case implies high energy consumption at the peak 

hours (6:00-7:00 h, 16:00, and 18:00). 

 

Figure 3. Predicted energy consumption of the EVs 

obtained with the backpropagation neural network. 

On the other hand, the obtained prediction accuracy, i.e., 

the MSE error of the training set was 0.12%; which is consider 
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acceptable for the energy prediction; however, it must be 

considered that this error can impact the charging/discharging 

plans and schedules of the EVs. 

4. Characterization of Renewable Sources Generation 

Profiles 

According to the optimization constraint of Eq. (6j) the 

other required input is the variable 𝑷𝒓𝒏
𝑴 ∈ ℝ𝑛that indicates the 

predicted generation of renewable sources located at the 

charging stations at each time step. 

In this case it was considered that the charging station 

contains 5 photovoltaic modules of 990 Wp with a peak power 

of 4.95 kWp and the estimation of the energy generated was 

performed with the model presented in [19] which has as 

inputs, the horizontal incident solar radiation and the 

temperature. The time series of both variables were taken from 

the database of reference [20] for the city of Texas since the 

data for Colombia were not available for the required time 

resolution of 5 minute intervals. 

Subsequently, upon obtaining the photovoltaic energy 

generation time series, implementation of a Long Short-Term 

Memory Network (LSTM) ensued to predict the future 

behavior of renewable energy generation. The illustrated 

structure for the LSTM can be found in Fig. 4, featuring 4 

sequential dropout layers comprising 48 neurons and 1 dense 

layer.

 

 

Figure 4. LSTM network architecture for the prediction of renewable generation. 

 

Being 𝑿  the input dataset that has a dimension of 

8 × 4032 , where the first dimension corresponds to the 

number of segments of the time series stacked in time and 

delayed by 1 time step, and the second dimension corresponds 

to the length of these blocks, i.e. the training window that 

corresponds to a period of two weeks; 𝒀 the output dataset 

with size 1 × 4032 . ℎ = 48  the number of neurons of the 

individual LSTM units, 𝑗 = 4 the number of sequential layers, 

𝒉𝒋 ∈ ℝℎ the hidden state vector, 𝒄𝒋 ∈ ℝℎ the cell state vector, 

𝒇𝒋 ∈ ℝℎ the forget gate’s activation vector, 𝒊𝒋 ∈ ℝℎ the forget 

input/update gate’s activation vector, �̂�𝒋 ∈ ℝℎ  the cell input 

activation vector, and 𝒐𝒋 ∈ ℝℎ output gate’s activation vector. 

It is essential to note the distinction in architecture 

between the BPN and LSTM networks. The BPN has a 

simpler structure compared to the LSTM network. Unlike the 

conventional BPN, which treats the time dimension as a 

feature, the LSTM employs various processing elements or 

blocks designed to efficiently learn long-term dependencies. 
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Additionally, the LSTM network incorporates feedback loops 

among its elements over time, illustrated in Fig. 4 for variables 

𝒉 and 𝒄. These characteristics make the LSTM more suitable 

for renewable generation forecasting since it present rapid 

changes in time. [21]. The obtained forecasting results with 

the LSTM network, for the considered data, are shown in Fig. 

5, which has an MSE error of 1.89 %. 

 

Figure 5. Predicted photovoltaic generation obtained with 

the LSTM network. 

5. Study Case and Optimization Results 

5.1.  Study Case 

The system chosen as a case study was composed of an 

existing public transport route in Medellín, Colombia, 

featuring proposed electric buses as its vehicles. The selected 

route, named "195II - Laureles Campestre - Estación Santa 

Lucía," was illustrated in Fig. 6. It has a length of 8 km and an 

average travel time of 20 minutes. The electric buses selected 

to supply the transport requirements of this route are a fleet of 

3 rapid transit buses with 324 kWh, whose parameters are 

detailed in reference [22].  

 

Figure 6. Illustration of the study case route and traffic 

network. 

Furthermore, it is considered that the buses are dispatched 

with a frequency of 30 minutes between 5:00-21:00 h, and a 

frequency of 15 minutes the rest of the day. 

Considering such elements, the energetic consumption of 

the EVs in the route, used to train the NN of Fig. 2, was 

obtained from performing traffic microsimulations of the 

study case zone and getting the speed, acceleration, and road 

slope profiles of each EV, for 63 different traffic congestion 

scenarios. The rest of the traffic interacting demand in each 

scenario (different from the EVs in the route) was estimated 

with the procedure described in [7]. 

Moreover, the parameters required in the objective 

function of the optimization in Eq. (6), such as the electricity 

cost, the revenues from energy sales, and the revenues from 

ancillary services provision were taken from reference [7]. 

And, the data for the estimation of the renewable generation, 

illustrated in Fig. 5, was taken from the reference [20] 

considering there were 5 photovoltaic modules in the charging 

station that can charge the vehicles parked at a specific time 

step. 

 

5.2.  Results and Analysis 

This section presents the obtained decision variables 

derived from the solution of the Mixed-Integer convex 

optimization described in Eq. (6) for a daily time horizon with 

discrete intervals of 5 minutes. This procedure was carried out 

in the Matlab software using the Gurobi solver [23]. 

Fig. 7 shows the resulting energy in the EVs batteries for 

the high congestion scenario.  

 

-Energy without provision of ancillary services. 

-- Energy with provision of ancillary services. 

Figure 7. Energy in EVs batteries for the different 

congestion scenarios. 

 

From this figure, it is observed that the energy content of 

EVs is higher when the ancillary services provision is not 

considered (dashed line). This occurred because the upward 
and downward reserves deplete the batteries' capacities; 

however, even under the provision of such reserves, the 

energy content is higher than the minimum allowed, 

accomplishing the limit imposed by the constraints of Eq. 

(6b). However, it is important to highlight that the fulfillment 

of the energy constraints depends on the accuracy of the 
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energy expenditure and renewable generation estimations. In 

this case, accuracies of 0.12% and 1.89% were obtained for 

respective predictions using BPN and LSTM networks. 

However, deviations between real values and their predictions 

could potentially lead to vehicles running out of power, 

particularly at critical times such as between 9:00 p.m. and 

2:00 a.m. 

On the other hand, in Fig. 7, it was noted that the 

difference between the energy content with and without 

ancillary services provision increased after 10:00h. This 

happened because the optimization system considers an 

hourly varying electricity price that has higher values between 

10:00 -22:00 h, as depicted in Fig. 8a which also illustrates the 

hourly energy purchased from the electrical network, sold, and 

stored for the provision of upward and downward reserves. It 

was observed that vehicles purchased energy during hours 

with lower electricity prices and sold energy during peak 

hours, ensuring that the exchanged power remained below the 

maximum allowed. 

Furthermore, it was noticed that the downward reserve 

was scheduled during hours with lower electricity prices, as 

the EVs aimed to reduce the charging power while 

maximizing the reserve usage. Specifically, it was 

economically profitable for the EVs to schedule a charging 

surplus capacity in the next hours 8:00 h, 11:00 h, 14:00 h, 

17:00 h in which the energy was cheap and also the reserves 

had a high probability of being used, according to [7] . A 

similar situation occurs in the upward reserve scheduling, as 

the EVs provided upward reserves at 23:00 h which was the 

time where is the upward reserves usage was more likely 

according to [7].  

Additionally, Fig. 8b illustrates the total energy 

purchased, energy sold, and ancillary services provided for the 

two congestion scenarios depicted in Fig. 3. A conclusion 

derived from it is that as high is the network congestion more 

energy should be purchased, less energy can be sold, and 

lower downward reserves can be provided.

 

 

(a) 

 

(b) 

  

Figure 8a. Power generated and exchanged with the electrical network. Fig. 8b. Comparison of energy purchased, sold, and 

provided for ancillary services for the different congestion scenarios. 

 

This is a consequence of the fact that in general, trips use 

more energy when there is more congestion on the network. 

However, in this case, the upward reserves could be increased 

because, in the case of greater congestion, the vehicles recover 

more energy from regenerative braking at 2:00 p.m. (see fig. 

3), so they can use this surplus energy as an ancillary service. 

Moreover, it is remarked that, despite the fact that in the data 

accumulated for the entire fleet of EVs given in Fig. 8, the 

charging and discharge of the batteries occur simultaneously 

(for example at 3:00 p.m. where the vehicles are charged with 

renewable energy and they also sell energy to the grid), this 

does not happen at the level of each vehicle, because thanks to 

the constraints given in Eqs. (6.e) - (6.f) the same vehicle 

cannot be charged and discharged at the same time, as well as 

it cannot interact with the power network when it is dispatched 

for travel. But in Fig. 8 this phenomenon is noted because 

while some vehicles are loaded, others are unloaded or 

dispatched for trips, it can be seen for example at 5:00 a.m. in 

Fig. 7. 

Additionally, it is noted that a sensitivity of the solution 

regarding the congestion level variations is appreciable in Fig. 

9; specifically, the optimal value changes a 3.64% when the 

congestion is decreased from 80% to 20%; and changes a 

1,4% when the photovoltaic generation is calculated with the 

real measured data presented in Fig. 5. These facts confirm 

that the estimation errors in the energy expenditure and the 

photovoltaic generation impact, not only the constraints 

accomplishment but also the solution of the optimization.   
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Finally, the average running time of the dynamic 

optimization, for the cases evaluated was 1,302.5 seconds or 

21.7 minutes, exceeding the length of the time steps (5 

minutes). This indicates that the proposed algorithm is suitable 

for offline execution. However, simulation time can be 

reduced by increasing the length of time steps, enabling its 

application for online management purposes. 

6. Conclusions 

This paper presents a management strategy for a fleet of 

public transport EVs that sell energy and provide frequency 

regulation ancillary services to the electrical network. The 

strategy integrates two artificial intelligence prediction 

algorithms with a decision-making system based on Mixed-

Integer dynamic optimization, which takes the predictions as 

inputs.  

The first artificial intelligence prediction algorithm based 

on a BP neural network was trained to forecast the energy 

expenditure of EVs in travels according to their departing 

schedule and the average traffic congestion in the analysis 

region for the specific calculation day, which are inputs 

available or whose obtaining is suitable for public transport 

systems. The second prediction algorithm, based on an LSTM 

network, was trained to forecast solar energy production from 

photovoltaic modules installed at the charging station, using 

radiation samples from two weeks ago as input. Moreover, the 

findings from the optimization result demonstrated a 

dependency between the feasibility of the solution, the 

reached optimum value, and the estimator's accuracy. 

Therefore, it emphasizes the importance of employing high-

accuracy algorithms, as presented in this paper, during the 

prediction stage to mitigate the risk of operational failures.  

One of the key advantages of the proposed strategy is its 

capability to provide individual charging/discharging and 

dispatch plans for each EV, even suggesting which vehicle 
must perform a required route, considering that vehicles must 

operate in the point that allows the whole fleet to be at the most 

profitable operative condition. This suggested operative 

condition considers not only economic factors of energy 

purchase, sale, and provision of ancillary services, but also 

takes into account the cost of batteries' wear, which avoids 

abrupt changes in the state of charge of the EVs. On the other 

hand, the developed strategy was proposed for an offline day 

ahead EVs management for a system with a single charging 

station, but the same model can be brought to online 

applications increasing the time step of the calculation, 

keeping in mind that it also could reduce the accuracy of the 

optimization model.  

Besides, the proposed model can be adapted, in future 

works, to multi-charging stations systems, adding dynamic 

equations for representing the vehicle's flow among stations 

and the energy expenditure for the different travel directions. 
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