Application of Seven-Level Neural Space Vector PWM in DVC Control System of a DFIG for Wind Turbine

Habib Benbouhenni

* Laboratoire d’Automatique et d’Analyse des Systèmes (LAAS), Departement de Génie Electrique, Ecole Nationale Polytechnique d’Oran Maurice Audin, Oran, Algeria.

Corresponding Author; Habib Benbouhenni, BP: 50B Ouled Fares Chlef Algeria, Tel: +213663956329, habib0264@gmail.com

Received: 09.07.2019 Accepted: 07.09.2019

Abstract- This paper presents the direct vector control (DVC) technique of doubly fed induction generator (DFIG) with the application of seven-level neural space vector pulse width modulation (7L-NSVPWM). The mathematical model of the DFIG has been described. The descriptions of the 7L-NSVPWM technique and neural networks (NNs) have been presented. The DVC control scheme with 7L-NSVPWM technique has been described. The simulation results of the DVC control with 7L-NSVPWM strategy have been performed, and the results of these simulations are presented and discussed.

Keywords: DFIG, 7L-NSVPWM, 7L-SVPWM, NNs, DVC.

Nomenclature

- L_s, L_r: Stator and rotor self-inductances.
- L_m: Mutual inductance.
- R_s, R_r: Stator and rotor resistances.
- ψ_r, ψ_s: Rotor and stator flux vectors.
- I_s, I_r: Rotor and stator current vectors.
- V_s, V_r: Rotor and stator voltage vectors.
- P_s, Q_s: Active and reactive powers.

Subscripts

- r, s: Rotor, stator.
- d, q: Synchronous d-q axis.

1. Introduction

The main objective of this work is the studying of the direct vector control (DVC) with seven-level space vector pulse width modulation (DVC-7L-SVPWM) and DVC strategy with seven-level neural SVPWM (DVC-7L-NSVPWM) applied to the doubly fed induction generator (DFIG) therefore; our paper is organized as follows:

The first part is devoted to the mathematical model of the DFIG, the model will simulate generator mode.

In the second part, we present a mathematical model of the seven-level NPC inverter.

The third is devoted to the study of the technical modulation technique 7L-SVPWM and 7L-NSVPWM techniques. Finally, we present a DVC control with 7L-SVPWM and 7L-NSVPWM techniques.

2. Modeling of the DFIG

The equations of fluxes and voltages for the DFIG stator and rotor in Park orientation structure are given by [1, 2]:

\[
\begin{align*}
V_{ds} &= R_s I_{ds} + \frac{d}{dt} \psi_{ds} - \omega_s \psi_{qs} \\
V_{qs} &= R_s I_{qs} + \frac{d}{dt} \psi_{qs} + \omega_s \psi_{ds} \\
V_{dr} &= R_r I_{dr} + \frac{d}{dt} \psi_{dr} - \omega_r \psi_{qr} \\
V_{qr} &= R_r I_{qr} + \frac{d}{dt} \psi_{qr} + \omega_r \psi_{dr}
\end{align*}
\]

(1)

The stator and rotor flux can be expressed as:

\[
\begin{align*}
\psi_{ds} &= L_s I_{ds} + M I_{dr} \\
\psi_{qs} &= L_s I_{qs} + M I_{qr} \\
\psi_{dr} &= L_r I_{dr} + M I_{ds} \\
\psi_{qr} &= L_r I_{qr} + M I_{qs}
\end{align*}
\]

(2)

The reactive and active powers can be written as:
The torque is given by:

\[
P_s = \frac{3}{2}(V_d I_{ds} + V_q I_{qs})
\]

\[
Q_s = \frac{3}{2}(V_q I_{ds} - V_d I_{qs})
\]

The torque is given by:

\[
T_{em} = \frac{3}{2} p \frac{M}{L_s} (\psi_{qs} I_{ds} - \psi_{ds} I_{qs})
\] (4)

The electrical model of the DFIG is completed by the following mechanical equation:

\[
T_{em} = T_r + J \cdot \frac{d\Omega}{dt} + f \cdot \Omega
\] (5)

Where:
- \(I_{ds}\) and \(I_{qs}\) are the stator currents.
- \(\psi_{dr}\) and \(\psi_{qr}\) are the rotor fluxes.
- \(\psi_{ds}\) and \(\psi_{qs}\) are the stator fluxes.
- \(V_{dr}\) and \(V_{qr}\) are the rotor voltages.
- \(V_{qs}\) and \(V_{ds}\) are the stator voltages.
- \(\omega_s\) is the electrical pulsation of the stator.
- \(I_{dr}\) and \(I_{qr}\) are the rotor currents.
- \(p\) is the number of pole pairs.
- \(M\) is the mutual inductance.
- \(\omega_r\) is the electrical pulsation of the rotor.
- \(f\) is the viscous friction coefficient.
- \(T_e\) is the electromagnetic torque.
- \(\Omega\) is the mechanical rotor speed.
- \(J\) is the inertia.
- \(T_r\) is the load torque.

3. Seven-level NPC inverter

Multilevel inverters (MIs) continue to receive more and more attention because of their low switching losses, high voltage operation capability, high efficiency and low output of electromagnetic interference [3]. The term MI starts with the three-level inverter introduced by Nabae et al (1981) [4]. Nowadays, MIs are becoming increasingly popular in power applications, as MIs have the ability to meet the increasing demand of power rating and power quality associated with lower electromagnetic interference and reduced harmonic distortion (THD). There are three main types of MIs: capacitor-clamped (flying capacitors), cascaded H-bridge and diode-clamped (neutral-clamped) inverter [5]. In this paper, we propose to use a seven-level neutral-point clamped inverter (NPC) to feed the rotor of the DFIG.

The seven-level NPC inverter consists of two pairs of series switches in parallel with six series capacitors where the anode of the upper diode is connected to the neutral of the capacitors and its cathode to the neutral of the upper pair of switches; the cathode of the lower diode is connected to the neutral of the capacitors and divides the main DC voltage into smaller voltages, which is shown in Fig. 1.

The voltage across the phase winding of the DFIG can attain one of the 7 levels 0, 1, 2, 3, 4, 5 or 6 depending upon the switching states of the inverters. The necessary conditions for the switching states for the 7 levels NPC are that the DC-link capacitors should not be shorted, and the output current should be continuous [6].

![Fig. 1 Seven-level NPC inverter.](image)

4. NSVPWM technique

A very popular strategy with high switching frequency in industrial applications is the space vector modulation (SVM) that uses the principles of space vectors and requires the calculation of sector and angle. In this paper, we propose a new SVM technique of seven-level NPC inverter based on calculation of minimum and maximum of voltages. However, this technique is detailed in [7, 8]. The advantage of the proposed seven-level SVM strategy is that it does not need to calculate the angle and sector, good utilization of DC-link voltage, low current ripple, is simple to implement compared to the traditional SVM technique. The SVM technique block represents the seven-level inverter model as shown in Fig. 2.
In order to improve the seven-level SVPWM performances, an additional use of the neural networks (NNs) is proposed. The principle of neural space vector pulse width modulation (NSVPWM) is similar to seven-level SVPWM technique. The difference is the use of NNs controllers to replace the hysteresis comparators. As shown in Fig. 3. The seven-level NSVPWM technique gives more minimum of THD value, minimize power ripples, easy to implement and simple scheme compared to traditional SVPWM technique [9].

<table>
<thead>
<tr>
<th>Parameters of the LM</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hidden layer</td>
<td>8</td>
</tr>
<tr>
<td>TrainParam.Lr</td>
<td>0.005</td>
</tr>
<tr>
<td>TrainParam.show</td>
<td>50</td>
</tr>
<tr>
<td>TrainParam.eposh</td>
<td>1000</td>
</tr>
<tr>
<td>Coeff of acceleration of convergence (mc)</td>
<td>0.9</td>
</tr>
<tr>
<td>TrainParam.goal</td>
<td>0</td>
</tr>
<tr>
<td>TrainParam.mu</td>
<td>0.9</td>
</tr>
<tr>
<td>Functions of activation</td>
<td>Tensing, Purling, gensim</td>
</tr>
</tbody>
</table>

The main advantage of the NN controller it is that is easy to implement the command and that it has the capability of generalization [10]. The block diagram of NNs controllers based hysteresis comparators is shown in Fig. 26 (see Appendix). The structure of Layer 1 and layer 2 is shown in Fig. 27 and Fig. 28 respectively (see Appendix).

A summary of the convergence of the network obtained by using the value of the parameters is depicted in Table 1.

4. DVC control with seven-level NSPWM technique
The principle is to orient the stator flux along the axis of the rotating frame [11].

\[\psi_{ds} = \psi_s \quad \text{and} \quad \psi_{qs} = 0 \quad (6)\]

On the other hand, by neglecting \(R_s\) the stator voltage can be expressed by [12, 13]:

\[
\begin{align*}
V_{ds} &= 0 \\
V_{qs} &= \omega_s \psi_s
\end{align*}
\quad (7)
\]

And:

\[
\begin{align*}
I_{ds} &= -\frac{M}{L_s} I_{dr} + \frac{\psi_s}{L_s} \\
I_{qs} &= -\frac{M}{L_s} I_{qr}
\end{align*}
\quad (8)
\]

The reactive and active powers consequently given by the following expression:

\[
\begin{align*}
P_s &= -\frac{3}{2} \frac{\omega_s \psi_s M}{L_s} I_{qr} \\
Q_s &= -\frac{3}{2} \left(\frac{\omega_s \psi_s M}{L_s} I_{dr} - \frac{\omega_s \psi_s^2}{L_s} \right)
\end{align*}
\quad (9)
\]
The equations of V_{dr} and V_{qr} become [14]:

$$
\begin{align*}
V_{dr} &= R_r I_{dr} + (L_r - \frac{M^2}{L_s}) p I_{dr} - g w_s (L_r - \frac{M^2}{L_s}) I_{qr} \\
V_{qr} &= R_r I_{qr} + (L_r - \frac{M^2}{L_s}) p I_{qr} + g w_s (L_r - \frac{M^2}{L_s}) I_{dr} + g \frac{M V_s}{L_s}
\end{align*}
$$

(10)

In steady state, we can write:

$$
\begin{align*}
V_{dr} &= R_r I_{dr} - g w_s (L_r - \frac{M^2}{L_s}) I_{qr} \\
V_{qr} &= R_r I_{qr} + g w_s (L_r - \frac{M^2}{L_s}) I_{dr} + g \frac{M V_s}{L_s}
\end{align*}
$$

(11)

The rotor current has the expression:

$$
\begin{align*}
I_{dr} &= (V_{dr} + g w_s (L_r - \frac{M^2}{L_s}) I_{qr}) \frac{1}{R_r + (L_r - \frac{M^2}{L_s}) p} \\
I_{qr} &= (V_{qr} - g w_s (L_r - \frac{M^2}{L_s}) I_{qr} - g \frac{M V_s}{L_s}) \frac{1}{R_r + (L_r - \frac{M^2}{L_s}) p}
\end{align*}
$$

(12)

The torque can then be expressed by [15]:

$$
T_{em} = -\frac{3}{2} p \frac{M}{L_s} I_{qr} \omega_{ds}
$$

(13)

Fig. 3 represents the DVC strategy of DFIG driven by a seven-level NPC inverter using SVPWM technique. This control scheme gives more harmonic distortion (THD) of stator/rotor current, stator flux ripple, torque ripple and reactive/active powers ripples of the DFIG.

Fig. 4 represents the DVC strategy of DFIG driven by a seven-level NPC inverter using SVPWM technique.
To reduce the harmonic distortion of rotor/stator current, active power ripple, reactive power ripple and torque ripple, we have applied the NSVPWM technique to regulate the active and reactive powers of the DFIG controlled by DVC control scheme. On the other hand, the DVC strategy with seven-level SVPWM strategy is easy to implement and simple scheme.

Fig. 5 represents the DVC strategy of a DFIG driven by a seven-level NSVPWM technique.

6. Simulation Results

The simulation results of DVC control with seven-level NSVPWM strategy of the 1.5MW DFIG are compared with DVC strategy using seven-level SVPWM technique. For this end, the strategies system was tested under different operating conditions such as sudden change of load reactive and active powers. The performance analysis is done with harmonic distortion of stator current, torque, reactive and active powers.

The DFIG used in this case study is a 1.5MW, 380/696V, two poles, 50Hz; with the following parameters: \(R_r = 0.021 \Omega \), \(R_s = 0.012 \Omega \), \(L_r = 0.0136 \)H, \(L_s = 0.0137 \)H and \(L_m = 0.0135 \)H. The system has the following mechanical parameters: \(f_r = 0.0024 \) Nm/s, \(J = 1000 \) kg.m\(^2\) [16, 17].

A. Reference tracking test (RTT)

From the simulation results presented in Figs. 7-8 it is apparent that the THD value of rotor current for the DVC-7L-NSVPWM is considerably reduced. Table 2 shows the comparative analysis of THD value for rotor current.

<table>
<thead>
<tr>
<th></th>
<th>DVC control with seven-level SVPWM</th>
<th>DVC control with seven-level NSVPWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD value</td>
<td>1.18%</td>
<td>0.49%</td>
</tr>
</tbody>
</table>

Table 2. Comparative analysis of THD value

For the DVC-7L-NSVPWM and DVC-7L-NSVPWM, the reactive and active powers, tracks almost perfectly their references values (see Figs. 9-10).
Fig. 10 shows the stator current of DVC-7L-SVPWM and DVC-7L-NSVPWM and Fig. 11 shows the electromagnetic torque of DVC-7L-SVPWM and DVC-7L-NSVPWM. From Figs. 12-15 can be seen that the DVC-7L-NSVPWM minimized the torque ripple, stator current ripple, active and reactive powers pulsations compared to DVC-7L-SVPWM control scheme.
B. Robustness test (RT)

In the following section, the nominal value of the R_r and R_s is doubled, the values of inductances L_s, M, and L_r are halved. Simulation results are presented in Figs. 16-17 and Figs. 18-21. As shown, these variations present a clear effect on the active power, reactive power, rotor current and torque. However, the effect appears more important for the DVC-7L-SVPWM control scheme compared to DVC-7L-NSVPWM control (see Figs. 22-25). On the other hand, the THD value of rotor current in the DVC-7L-NSVPWM has been significantly minimized. Table 3 shows the comparative analysis of THD value. Thus it can be concluded that the DVC-7L-NSVPWM control technique is more robust than the DVC-7L-SVPWM control scheme.

Table 3. Comparative Analysis of THD Value (RT)

<table>
<thead>
<tr>
<th>DVC control with seven-level SVPWM</th>
<th>DVC control with seven-level NSVPWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10%</td>
<td>1.21%</td>
</tr>
</tbody>
</table>

Fig. 13 Zoom in the reactive power (RTT).

Fig. 14 Zoom in the stator current (RTT).

Fig. 15 Zoom in the torque (RTT).

Fig. 16 THD of rotor current for DVC-7L-SVPWM strategy (RT).

Fig. 17 THD of rotor current for DVC-7L-NSVPWM strategy (RT).
7. Conclusions

In this work, the DVC principle is presented and it is shown that with NSVPWM for a seven-level NPC inverter. The simulation results obtained for the DVC control with intelligent SVPWM illustrate a considerable reduction in active power ripple, torque ripple, reactive power ripple and harmonic distortion of rotor current compared to the DVC control scheme utilizing seven-level SVPWM technique.

Appendix

a) ANN controller

![Block diagram of the ANN controller]
b) Layer 1 and layer 2

Reference

