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Abstract- Over the past years, many kinds of control techniques are proposed for DFIG drives. Among them, the DTC control 
scheme has gained more importance due to simple control schemes and fast dynamic response. However, it has the 
disadvantage of high ripples in stator current, rotor flux, torque, and slow response because of hysteresis controllers in torque 
and rotor flux loop. To improve the performance of direct torque control technique and to minimize the rotor flux and stator 
current ripples, DTC strategy based fuzzy super-twisting sliding mode controllers (FSTSMC) is proposed in this work. The 
simulation is carried out using Matlab software and compares the DTC strategy with proportional-integral (PI) controllers and 
the proposed control scheme is implemented and simulated results are shown. 
Keywords: DFIG, FSTSMC, DTC, PI. 

 

Nomenclature 
DTC                Direct torque control 
IM                   Induction motor 
DFIG              Doubly fed induction generator 
FSTSMC  Fuzzy super-twisting sliding mode 
controller 
PI                    Proportional integral 
ANN              Artificial neural network 
FL                  Fuzzy logic 
SVPWM        Space vector pulse width modulation 
SOCSM         Second order continuous sliding mode 
THD              Total harmonic distortion 
 
1.Introduction 
In the DTC control scheme of an IM, the command 
technique is based on the selection of appropriate stator 
voltage vectors to maintain the torque and flux  within their 
hysteresis comparator bands. The basic principle of the DTC 
control scheme was proposed by Depenbrock and Takahashi 
in 1985 [1]. However, the DTC strategy has many 
advantages, the simplest structure, the fast dynamic response, 
reliability, and lower parameter dependency, but it has some 
drawbacks, such as the flux and electromagnetic torque 
ripples. In [2], the author proposed a novel DTC strategy 
based on FL and ANNs controllers to control flux and torque 
of IM drive. In [3], a modified DTC control scheme which 

can minimize both rotor flux and torque linkage ripples has 
been proposed for a DFIG by using SOCSM regulators. In 
[4], the modified DTC method which is based on the 
SVPWM technique and PI controllers, has been proposed. In 
[5], DTC strategy based on a sliding mode controller to 
command DFIG has been proposed.   
The main objective of this work is the studying of the DTC 
strategy with proportional-integral (PI) controllers (DTC-PI) 
and DTC control scheme with fuzzy logic super-twisting 
sliding mode controllers (FSTSMC) to the DFIG therefore; 
our work is structured as follows: 
The first part is devoted to the DTC technique based on the 
PI controllers, this strategy is easy to implement and simple 
structure. But, this technique gives more THD of stator 
voltage/current of DFIG. 
In the second part, we present a DTC control scheme based 
on the FSTSMC algorithm to reduce the THD of stator 
current and rotor flux ripple. Finally, we presented a 
simulation of DTC-PI and proposed control scheme by using 
Matlab/Simulink software. 
 
2.DPC with PI controllers 
The DTC strategy is a simple and alternative approach 
control  formulation that does not require decomposition into 
symmetrical components, the DTC strategy has been proved 
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to be preponderant for DFIGs due to the simple 
implementation [6]. The DTC goal is to regulate the rotor 
flux and electromagnetic torque of the DFIG-based WTSs. 
However, the DTC strategies obtain fast response time and 
less dependence on DFIG parameters. On the other hand, the 
model mathematical of DFIG is detailed in [7-9]. 
In DTC control, it’s the rotor flux  and the electromagnetic 
torque which are directly controlled by using two PI 
controllers and two-level SVPWM strategy. The DTC, which 
is designed to regulate torque and rotor flux of the DFIG, is 
shown in Fig. 1[10]. 

 
 

Fig.1 DTC-PI strategy. 
 
The magnitude of the flux, which can be estimated by: 

                                                      (1) 

                                                           (2) 

Where :Vrα is the rotor voltage linkage of α-axis.
 

Vrβ : is the rotor voltage linkage of β-axis. 
φrβ : is the rotor flux linkage of β-axis. 
φrα : is the rotor flux linkage of α-axis. 
Irα : is the rotor current linkage of α-axis. 
Irβ : is the rotor current linkage of β-axis. 
The rotor flux amplitude is given by: 

 
                                                    (3) 

Where :φr is the rotor flux. 
The rotor flux angle is calculated by : 

                                                    (4) 

                                                    (5) 

                                                                   (6) 

Where : 

                                                                (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.DTC with FSTSMC algorithm 
To improve the DTC with PI controllers performances, a 
complimentary use of the FSTSMC algorithm is proposed. 
The principle of DTC with the FSTSMC algorithm (DTC-
FSTSMC) is similar to the DTC-PI control scheme. The 
difference is using an the FSTSMC algorithm to replace the 
classical PI controllers. 
This proposed strategy reduced torque ripple, rotor flux 
ripple and THD of stator voltage/current compared to DTC-
PI control scheme. This proposed strategy is easy to 
implement and simple structure. 
Recently applications of the SMC technique become more 
convenient in control systems. The SMC technique is 
popular in more applications. This technique proposed by 
Utkin in 1977 [11]. Since the robustness is the best 
advantage of an SMC method, it has been widely employed 
to control nonlinear systems that have model uncertainty and 
external disturbance [12, 13]. 
The STSM algorithm maintains the advantages of the 
traditional SMC techniques and allows for the elimination of 
the undesirable phenomena of chattering [14]. The output 
signal from the controller of this type is comparable with the 
control signal obtained from linear PI regulators. This 
algorithm is proposed by Utkin in 1999 [15]. On the other 
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hand, this algorithm is easy to implement and simple scheme 
compared to another classical algorithm. 
The control law of the STSMC algorithm can be defined as 
follows [16]: 

                                                     (8) 

where K1 and K2 are the coefficients of the proportional and 
integral parts of the STSMC algorithm, S is the switching 
function determined for the STSMC algorithm respectively; r 
is the exponent defined for the STSMC algorithm. 
The graphical representation of the control law of the 
STSMC algorithm is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Graphical representation of the control law of the 
STSM controller. 

 
Where the rotor flux magnitude error SQr = Qrref - Qr and the 
torque error STem = Temref - Tem, and the constant gains k1 
and k2 must check the stability conditions.

 The proposed STSMC algorithm, which is designed to 
regulate the torque and rotor flux of the DFIG is shown in 
Fig. 3. 

The original contribution of this work is the application of 
the STSMC algorithm in the DTC control scheme with a 
three-phase DFIG and simulation investigation of this novel 
control scheme. 
The FSTSMC algorithms are a modification of the traditional 
STSMC algorithms, where the switching controller term 
sgn(U), has been replaced by a fuzzy logic controller as 
shown in Fig. 4. Both of them do not need advanced 
mathematical models.  

The FLC method is proposed by Zadeh in 1965 [17]. This 
control technique is widely used in many areas. 
Traditionally, FL variables have been adjusted by expert 
knowledge [18]. The block diagram of the FLC based 
sign(U) is shown in Fig. 5. The FL rules for the proposed 
command scheme are given in Table 1 [19-21]. The 
membership function definition is shown in Fig. 6.  

 

The STSMC torque and rotor flux regulators are designed to 
respectively change the d and q-axis voltages as in equations 
(9) and (10) : 

                                        (9) 

                                  (10) 

 
 
 
 
 

 
 

 
 
 
 

 
 

 
 
 
 

Table 1.  Fuzzy ruls 
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The DTC control scheme of three-phase DFIG with the 
application of the FSTSMC algorithm is shown in Fig. 7. In 
this strategy, the torque, the magnitude of the rotor flux 
vector are controlled by the FSTSMC algorithm. The DTC 
with FSTSMC algorithms goal is to reduces the rotor flux 
ripple, THD of current and torque ripple of the DFIG-based 
wind turbines.  
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Fig. 3 Block diagram of STSMC algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Block diagram of FSTSMC algorithm. 
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Fig. 5 FLC controller. 

 

a) Error 

 
b) Change in error 

Fig. 6 Membership functions. 

 

Fig. 7 DTC system of three-phase DFIG with the application 
of FSTSMC algorithm. 

4. Simulation results 
The simulation results of DTC-FSTSMC strategy of DFIG 
are compared with DTC-PI strategy. The performance 
analysis is done with flux, harmonic distortion of stator 
current and torque. The DFIG used in this case study is a 
1.5MW, 2 poles, 380/696V, 50Hz, Rr = 0.021Ω, fr = 0.0024 
Nm/s, Rs = 0.012Ω, Lr = 0.0136H, J = 1000 kg.m2, Ls = 
0.0137H and Lm = 0.0135H. 
 
A. Reference tracking test (RTT) 

Figs. 8-9 shows the THD of the current of the DFIG for DTC 
with PI controllers and DTC-FSTSMC strategy one 
respectively. It can be clearly observed that the THD is 
minimized for DTC-FSTSMC when compared to  the DTC-
PI technique (See Table 2).  
For the DTC-FSTSMC and DTC-PI strategy, the rotor flux 
and torque tracks almost perfectly their reference values (see 
Figs. 10-11). 
Rotor flux response comparing curves are shown in Fig. 14. 
See figure the rotor flux ripple is significantly minimized 
when the DTC-FSTSMC technique is in use. 
Fig. 12 and Fig. 15 shows the current responses of both the 
DTC-PI and DTC-FSTSMC control scheme. It is found that 
the proposed DTC-FSTSMC exhibits smooth response and 
lesser ripple in stator current as compared to the DTC-PI 
method. 
Torque response comparing curves are shown in Fig. 13. See 
figure the electromagnetic torque ripple is significantly 
minimized when the DTC with FSTSMC algorithm is in use. 
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Table 2. Comparative analysis of THD value (RTT) 
 THD (%) 

DTC-PI DTC-
FSTSMC 

Stator current 0.65 0.25 
 

 

Fig. 8 THD of stator current (DTC-PI). 
 

 
Fig. 9 THD of stator current (DTC-FSTSMC). 

 
Fig.10 Torque (RTT). 

 
Fig.11 Rotor flux (RTT). 

 
Fig.12 Stator current (RTT). 

 
Fig. 13 Zoom in the torque (RTT). 

 
Fig. 14 Zoom in the rotor flux (RTT). 
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Fig. 15 Zoom in the stator current (RTT). 

B.Robustness Test (RT) 
In order to test the robustness of the proposed strategies, 
machine parameters have been modified : the resistances Rs 
and Rr are doubled and the values of the inductances Ls and 
Lr are divided by 2. Simulation results are presented in Figs. 
16-23. As it’s shown by these figures, these variations 
present a clear effect on stator current, torque and rotor flux 
and that the effect appears more important for the DTC-PI 
strategy than that with DTC with FSTSMC algorithm. Thus, 
it can be concluded that the proposed DTC with FSTSMC 
algorithm is more robust than the DTC-PI one. 

 

 

Fig. 16 THD of stator current (DTC-PI) 

 

 

Fig. 17 THD of stator current (DTC-FSTSMC). 

 

Fig.18 Torque (RT). 

 

Fig.19 Rotor flux (RT). 
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Fig.20 Stator current (RT). 

 

Fig.21 Zoom in the torque (RT). 

 

Fig. 22 Zoom in the rotor flux (RT). 

 

Fig. 23 Zoom in the stator current (RT). 

5. Conclusion  
Based on the FSTSMC algorithm, the DTC strategy is 
proposed to regulate the electromagnetic torque and flux of 
the DFIG-based wind turbine. The DTC-FSTSMC technique 
is easy to implement and a simple control scheme. The 
torque and rotor flux is controlled by using FSTSMC 
algorithm. The performance of the proposed command is 
verified by the computer simulations. The simulation results 

show that the rotor flux ripple, harmonic distortion of stator 
current and electromagnetic torque ripple in the DTC-
FSTSMC control scheme are reduced compared to DTC with 
PI controllers and even compared with results presented in 
other recent works such as [3] and [10].  
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