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Abstract- Photovoltaic panels are prone to degradation after long outdoor exposure, which can be manifested in multiple forms. 
This phenomenon also causes an alteration of the panel’s parameters. In this work, a heuristic search methodology based on the 
Nelder-Mead algorithm is applied in the estimation of photovoltaic panel parameters. Modifications that improve the 
performance of the method are also presented. The results of this modified Nelder-Mead algorithm are compared with the results 
of the classical method. A sensitivity analysis towards additive noise and ADC resolution is performed. 
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1. Introduction 

The massive use of fossil fuels causes the release of huge 
amounts of  , creating an artificial and forced heating of 
the atmosphere. Nowadays, all the societies are engaging in a 
massive energy transition, focusing on adapting renewable 
energies [1],[2] as alternatives. This is especially true for 
photovoltaic (PV) energy [3], [4] that has experienced an 
exponential growth worldwide on recent decades.  

Currently there is a lack of information on the various 
degradation modes [5]–[8] of photovoltaic modules in terms 
of frequency, speed of evolution and degree of impact on the 
lifetime and reliability of PV modules. In recent years, 
research on photovoltaic modules [2] has focused more on the 
the development of new technologies without having enough 
feedback on those that are already operational. 

 Although, detection methods such as infrared imaging 
and thermography are available, they are difficult to apply 
when the module is already operating. 

The decrease in the produced power is the primary 
indicator of the degradation of the photovoltaic panel. In order 

to be able to detect it and its degree, the best solution is to 
measure its maximum power and compare it with the power 
value provided by the manufacturer, which only gives the 
information about the panel under Standard  Test Conditions 
(STC) .  

To achieve an accurate estimation of the panel 
parameters, researchers need to carry out experimental set-ups 
under well-known climatological conditions with the use of 
expensive instrumentation [9]. Many researchers have 
suggested mathematical models for parameters identification 
of the PV cell:  

Ø an analytical method based on the Lambert W-
function, where the estimation of the five parameters is a 
multivariable and a transcendent problem, but with a limited 
range of calculation [10], [11]. 

Ø a genetic algorithm for parameter identification has 
been proposed in [12], [13], however this method can be 
ineffective due to its binary complexity. 

Ø Particle Swarm Optimization (PSO), Artificial Bee 
Swarm optimization (AFS) and Shuffled Frog Leaping 
algorithm (SFL) methods are presented in [14]–[16], but the 
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complex algorithms and long calculations lead to many 
uncertainties. 

  The aim of this work is to build a low-cost system that 
allows the identification of the parameters of a photovoltaic 
panel at any given time. This system is based on a 
mathematical heuristic search method known as the Nelder-
Mead algorithm. This method can be applied to any 
continuous function without having to evaluate its derivatives, 
is simple to implement, is efficient for a non-differentiable 
function, has an underlying geometric interpretation and 
ensures that the results are a decreasing series of values. 

However, the classic Nelder-Mead method has some 
drawbacks. In addition to its dependency on the initial 
simplex, it applies to limitless variables and problems without 
constraints, stops when a local minimum is found and the 
search can fail by stagnation on a non-stationary point. 
Therefore, improvements to the Nelder-Mead method are 
proposed. This modified algorithm is validated by comparing 
its results with the existing Nelder-Mead algorithm. A 
sensitivity analysis towards the ADC is also presented in order 
to identify the optimum instrument for photovoltaic parameter 
identification.  

2. Photovoltaic panels  

2.1. Degradation of photovoltaic panels 

Degradation reflects the deterioration, over time, of the 
characteristics of a device or a system that can reduce its 
capacity to operate within acceptable limits [17]. A degraded 
photovoltaic module should never lose its main function of 
generating electricity from sunshine, even if its use is no 
longer optimal. However, the degraded state of the 
photovoltaic module may be problematic when degradation 
exceeds a critical threshold. According to Wohlgemuth, the 
manufacturers consider that the PV module is degraded when 
its power reaches a level below 80% of its initial value [18]. 
In the following, different types of degradation of the most 
representative modules according to the literature are 
presented. 

Photovoltaic module performance may be degraded due to 
several factors: temperature; humidity; irradiation; dust; and 
mechanical shocks [18]- [22]. 

Each of the different factors mentioned can induce one or 
more types of degradation such as discoloration; 
delamination; corrosion; and breaks and cracks of cells [19], 
[23]. 

Figure 1, from [24], presents the effects of the degradation, 
due to dust accumulation on the surface of the panel, on its I-
V characteristic. 

 

Fig.  1. The effect of accumulation dust on the I-V 
characteristic of a PV panel [24] 

2.2. Model of a photovoltaic cell 

In this work, the single-diode model was used for a 
photovoltaic cell. The single-diode model is a simple model 
that describes the behaviour of a solar cell. Its equivalent 
circuit comprises a current source of intensity proportional to 
the incident irradiation, in parallel with a diode and the shunt 
resistor  (which represents the leakage current to the 
ground). Internal losses due to current flow and 
interconnection between cells are modelled by a series resistor 

. 

The current  supplied by a photovoltaic cell represented 
by a single diode model is 

   (1) 

where  is the output voltage,  is the saturation current, 
 is the photocurrent,  is the electronic charge,  is the 

Boltzmann constant,  is the junction ideality factor and  is 
the junction temperature. 

The five parameters that characterize a photovoltaic panel are 
, , ,  and .  

A photovoltaic cell has a nonlinear I-V characteristic, 
represented by the implicit equation (1), which includes the 
output current on each side of the equality, which makes it 
harder to solve. Therefore, the Newton-Raphson method has 
been used to find the roots of the (2) in order to obtain the 
characteristics of the PV panel. 
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  (2) 

3. Nelder-Mead algorithm enhancements 

3.1. Nelder-Mead algorithm 

The Nelder-Mead algorithm is a non-linear optimization 
algorithm that was published first by Nelder and Mead in 1965 
[25], [26]. It is a heuristic numerical method that seeks to 
minimize a continuous function in a multi-dimensional space. 
Also called downhill simplex method, the algorithm exploits 
the concept of simplex which is a polytope of  vertices 
in a space with  dimensions. The initial simplex undergoes 
simple transformations along the iterations: it deforms, moves 
and gradually shrinks until its peaks get closer to a point where 
the function is locally minimal. 

This method uses an arrangement of  vertices   
where the cost function is evaluated, where  is the dimension 

of the search domain. A regular simplex of initial size   
is initialized in  . 

Each iteration of the method starts with the vertices of a 
simplex and the corresponding values of the cost function. The 
simplex is modified through reflection, expansion, 
contraction, or shrinkage, and a point is accepted or rejected 
based on its cost function value. 

A generic iteration has two possibilities: i) a new peak at 
least better than the worst vertex is substituted for it; 
otherwise, ii) a shrinking is done and a set of  new vertices, 
plus the best of the old points, make up the simplex of the next 
iteration. The flowchart for Nelder-Mead's method is shown 
in Fig. 2. The values recommended in [25] for the reflection 
coefficients (α), contraction (β) and expansion (γ) are 1, ½ and 
2, respectively.  

An intuitive interpretation of this algorithm is that a search 
direction is defined by the worst point (the one whose cost 
function is highest) and the centroid of all the vertices except 
the worst. The simplex can accelerate (expand) or decelerate 
(contraction) in this direction to locate an optimal region and 
zoom (shrink) towards the optimum point. 

 

 
Fig.  2. Nelder-Mead algorithm  flowchart 
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3.2. Convergence conditions modification 

Convergence towards a minimum point is not guaranteed 
by the Nelder-Mead method [27]–[29]. The evidence for 
convergence of one-dimensional strictly convex functions and 
restricted results for a set of two-dimensional functions are 
given in [30]. In [31] the behaviour of the method applied to a 
family of strictly convex and continuous two-dimensional 
functions up to the third derivative, where convergence (or 
stagnation) occurs on a non-stationary point is analysed. 

In multidimensional problems, the usual convergence 
criteria used is the one proposed by Paul Wright in [30]. 
However, [30] proves the convergence of the algorithm for 
only one to two dimensional strictly convex functions and 
there are not many works concerning the convergence criteria 
for a multi-dimensional function. The classical convergence 
criteria in summarized in 

   (3) 

 

where MaxIteration is the maximum number of iterations and 
MaxFunction is the maximum number of function 
evaluations. The tolerances TolX and TolF bound the 
convergence conditions. 

Ø These conditions were tested in the estimation of the 
five parameters of a photovoltaic panel, under different 
operating conditions and it has been concluded that: the 
algorithm does not always converge; 

Ø the convergence condition, which is based on the 
difference between the worst vertex and the other ones, 
sometimes does not change from one iteration to the next 
which causes its stagnation on the remaining iterations, hence 
preventing the convergence of the algorithm or the 
convergence to an inaccurate solution. 

Ø even though this condition does not change between 
successive iterations, the centroid of the vertices does.  
Therefore, the new convergence criterion considered taking 
the centroid as part of its conditions. Which will also be used 
to size up the shape of the simplex at each iteration. The 
proposed criterion is shown on the system of equations(4), 
which consists on: i) a maximum number of iterations; ii) a 
maximum number of function evaluations; iii) the maximum 
difference between the centroid and the vertices; and iv) the 
maximum difference between the cost function of the centroid 
and the cost function values at the vertices. 

   (4) 

   

3.3. Initial simplex modification 

The convergence of the Nelder-Mead algorithm depends 
heavily on the chosen initial simplex. Choosing the first set of 
vertices is the initial step of the algorithm; it starts by choosing 
an initial approximation of the solution , and then creating 
the rest of the vertices according to the length of the simplex. 
Many studies have been done regarding the generation of the 
simplex. Spenldey et al. presented in  [32] a technique for 
empirical optimisation using as an initial simplex the system 
of equation(5). It is called the regular simplex because its 
edges have the same length, which means that its effectiveness 
will drop in the case of parameters with different orders of 
magnitude. 

   (5) 

with 

 

To set up the initial simplex, Box presents in [33] a new 
randomized bounds method. This is shown  in (6). 

   (6) 

which requires the use of pseudo-random numbers and ranges 
for each parameter.  But in this approach, the variables should 
be bounded, where  and  are respectively the minimum 

and the maximum bounds and  is a pseudo random number 

chosen from the interval . 

Another approach, presented by Pfeffer [34], is the most 
widely used in the Nelder-Mead algorithm. This technique is 
very effective in solving the scaling problem of the variables.  
It starts with the initial guess for the first vertex and the rest of 
vertices are generated according to 

   (7) 
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with 

. 

However, this technique of initialisation encounters some 
convergence problems on functions with more than two 
variables. 

This paper presents a new approach for the initialisation 
of the simplex that is suited for the estimation of photovoltaic 
parameters which is characterised by two factors: 
i) multivariable function (five parameters) which makes it 
harder to achieve convergence; ii) the different order of 
magnitude of the parameters (  is of order  while  
is of order ) creating a scaling problem. Taking the initial 
guess as first vertex, the configuration of the rest of the 
vertices is constructed as 

   (8) 

with 

. 

4. Simulation & Results 

4.1. Simulation conditions 

In this work, the parameters of a photovoltaic panel are 
estimated using the modified Nelder-Mead algorithm. The 
objective of the presented simulations is to analyse the 
convergence of the proposed algorithm and compare the 
results with the ones of pre-implemented function based on the 
classical convergence conditions (3)and the approach 
suggested by Pfeffer (7)for the initial simplex. The initial 
guess point  for the initial simplex and the bounds 
MaxIteration and MaxFunction are the same for both 
algorithms. 

A sensitivity analysis of the algorithm relative to different 
values of additive Gaussian white noise, which is omnipresent 
on experimental measurements, is presented. As the 
measurement set-up consists on an Analog to Digital 
Converter (ADC), this work also presents a sensitivity 
analysis of the algorithm regarding the resolution of the ADC 
with the aim to determine the optimal number of bits for the 
estimation of the photovoltaic parameters.  

To estimate the photovoltaic panel parameters, the 
Nelder-Mead algorithm is used to minimize, in a least-squares 
sense, the absolute difference between the ideal output current 

 and the estimated output current  where 

 and  represents the number of current 
measurements 

 .  (9) 

The ideal output current  is obtained by solving (2) 
using the ideal parameters provided by the manufacturer in 
Table 1. The estimated output current is also obtained by 
solving (2)using the results of Nelder-Mead algorithm. 

Table 1. Ideal photovoltaic parameters 

Parameter Value 
  3.95 A 

  2.16×10-8A 

  1.2 

  134.7 W 

  0.255 W 

 

The electrical characteristics of the photovoltaic panel 
used in this study are presented in Table 2. 

Table 2. Electrical characteristics of the photovoltaic panel 

Parameter Variable Value 
Cells number   36 

Maximum power   60 W 
Voltage at Pmax   17.1 V 
Current at Pmax   3.508 A 

Short circuit current   3.9 A 
Open circuit voltage   21.1V 
 

4.2. Noise analysis 

The first analysis concerns the estimation of five the 
parameters and the effect of different levels of additive white 
Gaussian noise. The performance of the modified Nelder-
Mead is compared with the performance of the classical 
algorithm, through the average and standard deviation of the 
estimated parameters obtained from 1000 simulations with 
different noise realizations. In this simulation, the standard 
deviation of the additive noise was varied from 2% to 20% in 
steps of 2%. In the following results, the blue curves 
correspond to the proposed modified Nelder-Mead algorithm 
and the red curves correspond to the classical Nelder-Mead 
approach using (3) as convergence conditions and Pfeffer 
method to initialize the simplex in(7). 

Figure 3 shows the mean and standard deviation values of 
the photocurrent  as a function of the current noise. The 
results show that the proposed algorithm performs better than 
the classical algorithm since the average value is closer to the 
ideal value and the standard deviation of the estimated 
photocurrent is also smaller indicating higher accuracy and 
precision. 
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Fig.  3. Average and standard deviation of photocurrent versus current noise 

 
Fig.  4. Average and standard deviation of saturation current versus current noise 

 
Fig.  5. Average and standard deviation of ideality factor  versus current noise 

 

Figure 4 presents the average and standard deviation of 
the estimated saturation current . For this parameter, the 
classical algorithm (red curve) fails to estimate the ideal value 
which is around  while the average results are 
around . The modified method results (blue curve) 
present an average value very close to the ideal value and also 
a much smaller standard deviation.  

Figure 5 presents the average and standard deviation of 
the estimated ideality factor  as a function of the current 
noise for both algorithms. Although, for low values of noise 
the classical algorithm performs almost as well as the 
modified method on the average value, it can be seen that the 
standard deviation is substantially larger.  

SI
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Fig.  6. Average and standard deviation of the shunt resistance versus current noise 

 
Fig.  7. Average and standard deviation of the series resistance versus current noise 

 

Additionally, for current noise above 8% the average value of 
the estimated parameter starts to diverge from the ideal value. 

As in the saturation current, the results obtained by the 
classical Nelder-Mead approach are mediocre at estimating 
the shunt resistance  . Figure 6 shows that the red curve 
diverges from the ideal value even with a low percentage of 
noise, while the estimate made by the modified algorithm is 
more accurate and precise. In fact, the standard deviation of 
the estimated parameter by the classical method is 2 orders of 
magnitude higher than the standard deviation obtained with 
the proposed method. 

Finally, Figure 7 represents the mean values and the 
standard deviation obtained by the two algorithms regarding 
the estimation of the series resistance  . The modified 
algorithm is more accurate as shown by the estimated average 
value and also more precise since the standard deviation of the 
estimated value is also much smaller than the one obtained 
with the classical algorithm which also fails to achieve an 
average value close to the ideal value. 

4.3. ADC resolution analysis 

The setup of the estimation of the photovoltaic parameters 
requires the use of an Analog to Digital Converter (ADC). 
This work models the behaviour of the ADC in order to study 
the effect of its resolution on the estimation of the photovoltaic 
parameters. 

The results in Figure 8 were obtained using the modified 
Nelder-Mead algorithm to identify the five photovoltaic 
parameters from simulated voltage and current digitized by a 
an ideal simulated ADC. The number of bits of the ADC is in 
the range [8, 24]. 

Figure 8 shows the estimated parameters as a function of 
the number of bits of the ADC. The estimated parameters 
converge to the ideal values as the number of bits increase. 
The estimated parameters present an overall error of 0.4% for 
an 8 bit ADC and the results stabilize at the ideal values when 
the ADC has 14 or more bits.  
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Fig.  8. Photovoltaic parameters estimation by modified Nelder-Mead algorithm versus number of bits of the ADC

  

4.4. Effects of additive noise on maximum power point  

To conclude this study, the estimation of the maximum 
power point (MPP) has been done. Figure 9 presents the 
relative error of the maximum power estimated by the 
classical Nelder-Mead (red) and the modified Nelder-Mead 
(blue), under the same STD conditions (1000W/m² and 25°C), 
as a function of current noise. Figures 9 and 10 show that the 
error increases with noise. However, the relative error of the 
estimated MPP is of the order of  for the modified 
algorithm while it is between 1% and 6% when the classical 
method is used. The classical algorithm will provide an 
inaccurate estimation of the maximum power; hence it will not 
indicate the right degree of degradation of the photovoltaic 
panel. Therefore, there will be cases where it will determine 
that the panel is degraded but in reality the panel still has 
available lifetime.  

 
Fig.  9. Relative Error of MPP versus current noise 

 

Fig.  10. Zoom of the relative error of the MPP of the 
modified Nelder-Mead algorithm 

5. Conclusion 

Installed photovoltaic panels sooner or later are drawn 
into degradation. The identification of the panel parameters 
gives access to its I-V and P-V characteristics under any given 
conditions. This also allows the prediction of the degree of the 
degradation of the panel by comparing the produced 
maximum power with the ideal one. This work presents new 
modifications to the Nelder-Mead algorithm that improve its 
performance regarding the estimation of the photovoltaic 
parameters. Comparing its results with the classical Nelder-
Mead, has shown to have more precise and accurate 
convergence. Even in the case of very perturbed data due to 
high noise, the modified algorithm has shown its ability to 
estimate the panel parameters with a low error. As for the 
ADC, this study has concluded that a low-cost 14 bit ADC is 
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suitable to address this problem. All these studies were carried 
out as part of the research of optimisation of the performance 
of the photovoltaic panels. 
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