Detection of Xylene as a Detrimental Chemical Compound by Employing a Photonic Crystal Based on Porous Silicon

Sofyan A. Taya, Nael Doghmosh, Anas A. M. Alkanoo

Abstract


We propose an optical sensor based on a one-dimensional binary photonic crystal (PC) with an inverted symmetry for the detection of Xylene which is a harmful chemical compound. The structure of the PC is considered to be (Si/ SiO2)N (SiO2/ Si)N, where N is the number of unit cells. The silicon that is being employed is porous. The analyte material is assumed to be infiltrated into the silicon porous network. Thus, the air inside the void space of the ensemble is replaced by Xylene causing the effective refractive index of the network to rise. As a result, the Bragg peak is observed to have a red shift. The type of chemical substance that is contained in the silicon pores can be precisely identified using transmission spectra tuning. The chemical sensor performance parameters are examined with varying porosity, layer liquid fraction, porous layer thickness, and angle of incidence. The effectiveness of the proposed sensor is significantly influenced by these factors. The proposed sensor can become a milestone for the detection of gases and liquids for industrial purposes.


Keywords


Photonic crystal; porous silicon, chemical sensor; Xylene

Full Text:

PDF

References


J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:Clarendon Press, 1892, pp.68-73. (Book)

N. Hidalgo, M. E. Calvo, S. Colodrero, and H. Míguez, “Porous One-Dimensional Photonic Crystal Coatings for Gas Detection”, IEEE Sens. J., Vol. 10, No. 7, pp. 1206-1212, 2010.

C. F. Blanford, R. C. Schroden, M. Al-Daous, and A. Stein, “Gems of chemistry and physics: Macroporous metal oxides with 3D order,” Adv.Mater., vol. 13, pp. 401–407, March 2001.

Y. J. Lee and P. V. Braun, “Tunable inverse opal hydrogel pH sensors”, Adv. Mater., vol. 15, pp. 563-566, April 2003.

S. Fang, H. Wang, J. Yang, S. Lu, B. Yu, J. Wang, and C. Zhao, “Formation of Si nanowires by the electrochemical reduction of porous Ni/SiO2 blocks in molten CaCl2”, J. Phys. Chem. Solids, Vol. 89, pp. 1-6, 2016.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness”, Chem. Mater., vol. 11, pp. 2132–2140, August 1999.

A. Stein, “Sphere templating methods for periodic porous solids”, Micropor. Mesopor. Mater., vol. 44, pp. 227–239, June 2001.

K. Lee and S.A. Asher, “Photonic crystal chemical sensors: pH andionic strength”, J. Amer. Chem. Soc., vol. 122, pp. 9534–9537, October 2000.

S. Y. Choi, M. Mamak, G. von Freymann, and N. Chopra et al., “Mesoporous Bragg stack color tunable sensors”, Nano Lett., vol. 6, pp. 2456–2461, November 2006.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks”, Small, vol. 3, pp. 1445–1451, August 2007.

V. R. Nair and R. Vijaya, "Photonic crystal sensors: An overview", Prog. Quantum. Electron., Vol. 34, No. 3, pp. 89-134, 2010.

N. Doghmosh, S. A. Taya, A. Upadhyay, M. M. Olaimat, and I. Colak, “Enhancement of optical visible wavelength region selective reflector for photovoltaic cell applications using a ternary photonic crystal”, Optik, Vol. 243, pp. 167491, 2021.

Y. Ju, “Tolerance analysis of photonic crystal substrate used in spectrometer-free photonic crystal enhanced microscopy”, Opt. Quantum. Electron., vol. 52, pp. 485, 2020.

C. P. Yu, and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures” Opt. Quantum. Electron., 36, pp. 145–163, 2004.

S. Boutami, B. Benbakir, J. Leclercq and P. Viktorovitch, "Compact and polarization controlled 1.55 ?m vertical-cavity surface-emitting laser using single-layer photonic crystal mirror", Appl. Phys. Lett., Vol. 91, pp. 071105, 2007.

X. Xu, and J. Ding, “A wide band-pass filter of broad angle incidence based on one-dimensional metallo-dielectric ternary photonic crystal”, Opt. Quantum. Electron., vol. 41, pp. 1027–1032, 2009.

R.G. Bikbaev, S.Y. Vetrov and I.V. Timofeev, "Hyperbolic metamaterial for the Tamm

plasmon polariton application", J. Opt. Soc. Am. B., Vol. 37, No. 8, pp. 2215-2220, 2020.

Z. Wang, P. Gao, S. Liu, and X. Chen, “A reflective methane concentration sensor based on biconvex cone photonic crystal fiber”, Optik, Vol. 24, pp. 166983, 2021.

J.E. Baker, R. Sriram and B.L. Miller, "Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing", LOC, Vol. 21, pp. 971–990, 2015.

F. Segovia-Chaves and H. Vinck-Posada, "Dependence of the defect mode with temperature, pressure and angle of incidence in a 1D semiconductor-superconductor photonic crystal", Phys. C. Supercond. Appl., Vol. 553, pp. 1–7, 2018.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, F. Bussolino, "A fluorescent onedimensional photonic crystal for label-free biosensing based on Bloch surface waves", Sens., Vol. 13, pp. 2011–2022, 2013.

F. Chaves and H. Posada, "Tuning of the defect mode in a 1D superconductor-semiconductor crystal with hydrostatic pressure dependent frequency of the transverse optical phonons", Phys. C: Supercond. Appl., Vol. 556, pp. 7–13, 2019.

T. Chen, Z. Han, J. Liu and Z. Hong, "Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high quality factors", Appl. Opt., Vol. 53, pp. 3454–3458, 2014.

R. Kandyala, S. P. Raghavendra, S. T. Rajasekharan, “Xylene: An overview of its health hazards and preventive measures”, OMPJ, Vol. 14, No. 1, pp. 1-5, January 2010.

K. Niaz, H. Bahadar, F. Maqbool, and M. Abdollahi, “A review of environmental and occupational exposure to xylene and its health concerns”, EXCLI J., Vol. 14, pp. 1167-86, November 2015.

L. Pavesi, C. Mazzoleni, R. Guardini, M. Cazzanelli, V. Pellegrini, and A. Tredicucci, “Porous-silicon microcavities”, IL NUOVO CIMENTO, VOL. 18, No. 10, pp. 1213-1223, 1996.

I.M. White and X. Fan, “On the performance quantification of resonant refractive index sensors”, Opt. Express, Vol. 16, No. 2, pp. 1020-1028, 2008.

M. G. Mardones, P. Cea, M. C. López and C. Lafuente, “Refractive properties of binary mixtures containing pyridinium-based ionic liquids and alkanols”, Thermochim. Acta, Vol. 572, pp. 39-44, 2013.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, Sh. Wang and Q. Xiong, “Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing”, ACS Publications, Vol. 11, No. 8, pp. 3232, 2011.

K Zang, D Zhang, Y Huo, X Chen, C Y Lu, E T Fei1, Th I Kamins1, X Feng, Y Huang and J S Harris, “Microring bio-chemical sensor with integrated low dark current Ge photodetector”, Appl. Phys. Lett., Vol. 106, pp. 101111, 2015.

Y. S. Lin, “Complementary infrared metamaterials for volatile organic solutions sensing”, Mater. Lett., Vol. 195, pp. 55, 2017.

H. Muthuganesan, Y. Kar, C. V. Kruijsdijk and Sh. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator’, IEEE Sens. J., Vol. 20, No. 11, pp. 5970, 2020.

Y. Singh, A. Sadhu and S. K. Raghuwanshi, “Development and Experimental Analysis of Titanium Dioxide (TiO2) Coated Etched Fiber Bragg Grating Sensor for Chemical Sensing”, IEEE Sens. J., Vol. 20, No. 15, pp. 8528, 2020.

S. A. Taya, A. Sharma, N. Doghmosh and I. Colak, “Detection of water concentration in ethanol solution using a ternary photonic crystal-based sensor”, Mater. Chem. Phys., Vol. 279, pp. 125772, 2022.




DOI (PDF): https://doi.org/10.20508/ijsmartgrid.v7i1.271.g258

Refbacks

  • There are currently no refbacks.


www.ijsmartgrid.com; www.ijsmartgrid.org

iilhcol@gmail.com; ijsmartgrid@nisantasi.edu.tr

Online ISSN: 2602-439X

Publisher: ilhami COLAK (istanbul Nisantasi Univ)

Cited in Google Scholar and CrossRef