Multi-objective optimal sizing design of a Diesel-PV-Wind-Battery hybrid power system in Colombia

Abstract

This paper proposes a design of an isolated hybrid microgrid using an iterative optimization method: the branch and cut algorithm. The Colombian community of Unguía, found in the state of Chocó, has been proposed for the microgrid design. The optimization objectives are the minimization of the grid operational costs and CO2 emissions, and ensuring 80 % of load demand coverage. The elements considered in the microgrid design are: Two Diesel generators that already exists in community, a battery bank, photovoltaic panels and wind turbines. In addition a comparison between the designs obtained with the branch and cut algorithm and the software HOMER is performed for the Unguía community.

References

[1] A. . Abdulkarim, S. M. . Abdelkader, D. J. . Morrow, A. J. . Falade, A. U. . Lawan, and H. R. . Iswadi, “Effect of weather and the hybrid energy storage on the availability of standalone microgrid,” Int. J. Renew. Energy Res., vol. 6, no. 1, pp. 189–198, 2016.
[2] Y. Allahvirdizadeh, M. Mohamadian, and M. Haghifam, “Study of Energy Control Strategies for a Standalone PV / FC / UC Microgrid in a Remote Area,” Int. J. Renew. Energy Res., vol. 7, no. 3, 2017.
[3] E. Hossain, R. Perez, and R. Bayindir, “Implementation of hybrid energy storage systems to compensate microgrid instability in the presence of constant power loads,” 2016 IEEE Int. Conf. Renew. Energy Res. Appl. ICRERA 2016, vol. 7, no. 2, pp. 1068–1073, 2017.
[4] A. Venkataraman, A. I. Maswood, S. N. Rahman, and O. H. P. Gabriel, “A novel maximum power point tracking algorithm for a stand-alone unity power factor wind energy conversion system,” Renew. Energy Res. Appl. (ICRERA), 2013 Int. Conf., no. Dc, pp. 109–114, 2013.
[5] F. Girbau-Llistuella, A. Sumper, R. Gallart-Fernandez, and V. Buehner, “Operation of rural distribution grids with intermittent generation in connected and island mode using the open source EMS solver SCIP,” 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 5, pp. 983–988, 2015.
[6] T. T. Sepulveda and L. Martinez, “Optimization of a Hybrid Energy System for an Isolated Community in Brazil,” Int. J. Renew. Energy Res., vol. 6, no. 4, pp. 1476–1481, 2016.
[7] C. Gamarra and J. M. Guerrero, “Computational optimization techniques applied to microgrids planning: A review,” Renew. Sustain. Energy Rev., vol. 48, pp. 413–424, 2015.
[8] Y. Tan, L. Meegahapola, and K. M. Muttaqi, “A review of technical challenges in planning and operation of remote area power supply systems,” Renew. Sustain. Energy Rev., vol. 38, pp. 876–889, 2014.
[9] C. Gamarra and J. M. Guerrero, “Computational optimization techniques applied to microgrids planning: A review,” Renew. Sustain. Energy Rev., vol. 48, pp. 413–424, 2015.
[10] P. D. Brown, J. a. Peças Lopes, and M. a. Matos, “Optimization of pumped storage capacity in an isolated power system with large renewable penetration,” IEEE Trans. Power Syst., vol. 23, no. 2, pp. 523–531, 2008.
[11] L. Ferrer-Martí, R. Pastor, G. M. Capó, and E. Velo, “Optimizing microwind rural electrification projects. A case study in Peru,” J. Glob. Optim., vol. 50, no. 1, pp. 127–143, 2011.
[12] L. Ferrer-Martí, B. Domenech, A. García-Villoria, and R. Pastor, “A MILP model to design hybrid wind-photovoltaic isolated rural electrification projects in developing countries,” Eur. J. Oper. Res., vol. 226, no. 2, pp. 293–300, 2013.
[13] E. E. Gaona, C. L. Trujillo, and J. a. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renew. Sustain. Energy Rev., vol. 51, pp. 125–137, 2015.
[14] S. Ruiz Alvarez, A. Márquez Ruiz, and J. Espinosa Oviedo, “Optimal design of a diesel-PV-wind system with batteries and hydro pumped storage in a Colombian community,” IEEE 6th Int. Conf. Renew. Energy Res. Appl., vol. 5, 2017.
[15] S. R.- Álvarez, J. Patiño, A. Márquez, and J. Espinosa, “Optimal Design for an Electrical Hybrid Micro Grid in Colombia Under Fuel Price Variation,” vol. 7, no. 4, 2017.
[16] S. Albert, “Solving Mixed Integer Linear Programs Using Branch and Cut Algorithm,” 1999.
[17] A. Maleki and A. Askarzadeh, “Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran,” Sustain. Energy Technol. Assessments, vol. 7, pp. 147–153, 2014.
[18] N. M. Bellaaj, “Optimal Sizing Design Of An Isolated Microgrid Using Loss Of Power Supply Probability,” 2015 6th Int. Renew. Energy Congr., 2015.
[19] a Kaabeche, M. Belhamel, and R. Ibtiouen, “Optimal sizing method for stand-alone hybrid PV / wind power generation system,” Rev. des Energies Renouvelables Bou Ismail Tipaza, pp. 205–213, 2010.
[20] A. Maleki and A. Askarzadeh, “Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran,” Sustain. Energy Technol. Assessments, vol. 7, pp. 147–153, 2014.
[21] T. Van de Boom and B. De Schutter, Lectures on optimization fot systems and control, Delft Cent. 2004.
[22] Climate Challenges Market Solutions, “Precios CO2,” Sistema europeo de negociación de CO2, 2015. [Online]. Available: http://www.sendeco2.com/es/.
[23] D. Tobón Orozco and S. Agudelo Flórez, “Optimización de herramientas multiobjetivo para la toma de decisiones de inversión en sistemas aislados sostenibles de energía,” PhD Propos., vol. 1, pp. 1–223, 2015.
[24] Oxfam, “Divide and Purchase: How land ownership is being concentrated in Colombia,” p. 40, 2013.
[25] N. E. Gómez, “Energización de las zonas no interconectadas a partir de las energias renovables solar y eólica,” Universidad Pontificia Javeriana, 2011.
[26] C. Sánchez, F. Rodriguez, E. Collante, and O. Simbaqueva, “Atlas de radiación solar de Colombia,” … , HIMAT, Bogotá, Colomb., pp. 13–22, 1993.
[27] Instituto de Hidrología Meteorología y Estudios Ambientales, “Datos estadísticos meteorológicos de temperatura del aire y velocidad de viento en la superficie en el municipio de Unguía-Chocó.” Bogotá D.C., 2016.
[28] NASA, “NASA Surface meteorology and Solar Energy: HOMER Data,” NASA Surface meteorology and Solar Energy, 2016. [Online]. Available: https://eosweb.larc.nasa.gov/cgi-bin/sse/homer.cgi. [Accessed: 23-Nov-2016].
[29] V. Graham and K. Hollands, “A time series model for Kt with application to global synthetic weather generation,” Sol. Energy, vol. 40, no. 2, pp. 83–92, 1988.
[30] Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Reporte de energía mensual para 2015 del municipio de Unguía-Chocó,” 2016.
[31] S. Ruiz, “Metodología para el diseño de microrredes aisladas usando métodos de optimización numérica,” Universidad Nacional de Colombia, 2017.
Published
2018-03-25
How to Cite
RUIZ, Semaria; ESPINOSA, Jairo. Multi-objective optimal sizing design of a Diesel-PV-Wind-Battery hybrid power system in Colombia. International Journal of Smart Grids, ijSmartGrid, [S.l.], v. 2, n. 1, March, p. 49-57, mar. 2018. ISSN 2602-439X. Available at: <http://www.ijsmartgrid.org/index.php/ijSmartGrid/article/view/34>. Date accessed: 26 apr. 2018.